Applied Fluid Mechanics (7th Edition)
7th Edition
ISBN: 9780132558921
Author: Robert L. Mott, Joseph A. Untener
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11, Problem 11.34PP
It is desired to deliver 250 gal/min of ethyl alcohol at
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
7. A large tank is partly filled with water, the air space above being under pressure. A 2" hose connected
to the tank discharges on the roof of a building 50 ft above the level in the tank. The friction loss is 18 ft.
What air pressure must be maintained in the tank to deliver 0.436 cfs on the roof ?
Subject: Fluid mechanics
Give me right solution according to the question..
Compute the power required to operate and the efficiency of a pump which raises 9,200 gallons of water per minute through a height of 128.0 ft., when the loss of head in the pump and pipe amounts to 14 ft.
Item#3
A pipe handles a flow rate of 0.002 m³/s. Find the minimum inside diameter that
will provide an average fluid velocity not to exceed 6.1 m/s.
Chapter 11 Solutions
Applied Fluid Mechanics (7th Edition)
Ch. 11 - Water at 10C flows from a large reservoir at the...Ch. 11 - For the system shown in Fig. 11.14, kerosene (...Ch. 11 - Figure 11.15 shows a portion of a hydraulic...Ch. 11 - Figure 11.16 shows part of a large hydraulic...Ch. 11 - Oil is flowing at the rate of 0.015m3/s in the...Ch. 11 - For the system shown in Fig. 11.18, calculate the...Ch. 11 - A liquid refrigerant flows through the system,...Ch. 11 - Water at 100F is flowing in a 4-in Schedule 80...Ch. 11 - A hydraulic oil is flowing in a drawn steel...Ch. 11 - In a processing plant, ethylene glycol at 77F is...
Ch. 11 - Water at 15C is flowing downward in a vertical...Ch. 11 - Turpentine at 77F is flowing from A to B in a 3...Ch. 11 - ]11.13 A device designed to allow cleaning of...Ch. 11 - Kerosene at 25C is flowing in the system shown in...Ch. 11 - Water at 40C is flowing from A to B through the...Ch. 11 - Oil with a specific gravity of 0.93 and a dynamic...Ch. 11 - Determine the required size of new Schedule 80...Ch. 11 - What size of standard hydraulic copper tube from...Ch. 11 - Water at 60F is to flow by gravity between two...Ch. 11 - The tank shown in Fig. 11.24 is to be drained to a...Ch. 11 - Figure 11.25 depicts gasoline flowing from a...Ch. 11 - For the system in Fig. 11.26, compute the pressure...Ch. 11 - For the system in Fig. 11.26, compute the total...Ch. 11 - For the system in Fig. 11.26 specify the size of...Ch. 11 - A manufacturer of spray nozzles specifies that the...Ch. 11 - Specify the size of new Schedule 40 steel pipe...Ch. 11 - Refer to Fig. 11.27. Water at 80C is being pumped...Ch. 11 - For the system shown in Fig. 11.27 and analyzed in...Ch. 11 - In a water pollution control project, the polluted...Ch. 11 - Repeat Problem 11.29, but use a 3-in Schedule 40...Ch. 11 - Water at 10C is being delivered to a tank on the...Ch. 11 - If the pressure at point A in Fig. 11.29 is 300...Ch. 11 - Change the design of the system in Fig. 11.29 to...Ch. 11 - It is desired to deliver 250 gal/min of ethyl...Ch. 11 - For the system shown in Fig. 11.30, compute the...Ch. 11 - Repeat Problem 11.35, but consider the valve to be...Ch. 11 - Repeat Problem 11.35, but consider the valve to be...Ch. 11 - Figure 11.31 depicts a DN 100 Schedule 40 steel...Ch. 11 - Repeat Problem 11.38 but replace the globe valve...Ch. 11 - Repeat Problem 11.38 but use a DN 125 Schedule 40...Ch. 11 - Repeat Problem 11.38, but replace the globe valve...Ch. 11 - It is desired to drive a small,...Ch. 11 - Figure 11.32 shows a pipe delivering water to the...Ch. 11 - Repeat Problem 11.43, except consider that there...Ch. 11 - A sump pump in a commercial building sits in a...Ch. 11 - For the system designed in Problem 11.45, compute...Ch. 11 - Figure 11.33 shows a part of a chemical processing...Ch. 11 - For the system described in Problem 11.47, and...Ch. 11 - For the system described in Problem 11.47, and...Ch. 11 - For the system described in Problem 11.47, and...Ch. 11 - Analyze the system shown in Fig. 11.11 with...Ch. 11 - Create a program or a spreadsheet for analyzing...Ch. 11 - Create a program or a spreadsheet for determining...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 8.17 Water at 60 °F flows at a rate of 4.0 gal/min through a 6-in. I.D. plastic pipe. The pipe is 500 ft long and rises a vertical height of 40 ft over the 500 ft. Find the pressure drop.arrow_forwardQ.1 Water is flowing through a 6” dia corrugated steel pipe. An energy loss of 2ft of head occurs over a length of 100ft . Compute the volume flow rate and velocity at design value of Ch?arrow_forward4. A pump draws 20 lit/sec of water from reservoir A to reservoir B as shown. Assuming f = 0.02 for all pipes, compute the pressure at point 2 in kPa. El. 10 200 mm-500 m PUMP El. 60 150 mm - 1200 m El. C Barrow_forward
- Reducer connection connecting a pipe that carries water with a diameter of A (mm) and another with a diameter of B (mm). If the pressure difference between the two ends of the joint is equal to C (mm) of mercury, calculate the average velocity at the inlet and outlet sections, and find the volumetric flow rate if the loss is small that can be neglected.arrow_forward2. A water is flowing out of the pipe and nozzle when the pressure at point A is 55 kPa where the diameter is 200 mm. Assuming negligible head loss. Diameter of nozzle is 100mm. a.) Compute Velocity at point A. b.) Compute the discharge coming out of pipe c.) Compute the height above the nozzle to which the water jet will shoot in meters. 1.1 water- D=100 mm Nozzle mm PA=55 kPa AD-200arrow_forwardIn Applied fluid mechanic, chapter 8 problem 8.21, can someone explain to me how to solve step by step? The question is A system is being designed to carry 500 gal/min of ethylene glycol at 77 F at a maximum velocity of 10 ft/s. Specify the smallest standard Schedule 40 steel pipe to meet this condition. Then for the selected pipe compute the Reynolds number for flow.arrow_forward
- Water is transported for 500 m in a 4 inch ductile iron pipe (coated) with a flow rate of 0.04 m3/s. Calculate the pressure drop over the 500 m length of pipe. (Calculate the friction factor f using the formula given in class notes/textbook, and not by using the Moody chart).arrow_forward11. AU-tube mercury differential manometer is used to measure the difference of pressure between inlet throat of a venturimeter placed with its axis horizontal in a pipeline. Calculate the difference in pressure between inlet and throat when the manometer reading is 250 mm and water flows through the pipeline. [Ans. 3.15 m of water]arrow_forwardBrine, specific gravity of 1.15 is draining from bottom of a large open tank through a standard 2-in schedule 40 pipe. The drainpipe ends at a point 15 ft below the surface of the brine in the tank. Considering a streamline starting at the surface of the brine in the tank and passing through the center of the drain line to the point of discharge and assuming that friction along the streamline is negligible, calculate the velocity of of flow along the streamline at the point of discharge from the pipe.A. 20.5 ft/sB. 24.3 ft/sC. 27.4 ft/sD. 31.1 ft/sarrow_forward
- Please give detailed explanations and show your work clearly - I will be using this to study for an upcoming exam. Please do as much as you can but don't worry if you cannot complete the entire problem. Thank you!arrow_forwardWater is flowing in a 2 inch Schedule 40 steel pipe with a volume flow rate of 1.0 gpm. Compute the pressure difference between two points 500 feet apart. The pipe is horizontal. Report your result in WC.arrow_forwardWater is pumped thru a vertical 50mm new galvanized-iron pipe to an elevated tank on the roof of a building.The pressure on the discharge side of the pump is 1400kpa. What pressure can be expected at a point in the pipe 75mm above the pump when the flow is 9 liters/sec?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License