Concept explainers
Oil with a specific gravity of 0.93 and a dynamic viscosity of
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
Applied Fluid Mechanics (7th Edition)
- The picture below depicts a system for delivering chocolate ganache in liquid form. Thenozzle on the end of the hose requires 140 kPa of pressure to operate effectively. Thehose is smooth plastic with an ID of 25 mm. The chocolate has a specific gravity of 1.1and a dynamic viscosity of 2.0 X 10-3 Pa*s. If the length of the hose is 85 m and there is a change in height of 10 m, determine(a) the power delivered by the pump to the ganache and(b) the pressure at the outlet of the pump.Neglect the energy losses on the suction side of the pump. The flow rate is 85 L/min.arrow_forwardAnswer the problem correctly and provide complete and readable solutions. If you can explain the process (briefly), please do so. Thank you!arrow_forwardB1. A water with viscosity 11.4x10-3 poise is flowing through a pipe of diameter 300 mm at the rate of 500 litres per sec. Find the Reynold's Number & the head lost due to friction in the pipe of length 1 km. (Enter only the values by referring the unit given. Also upload the hand written answers in the link provided) The velocity of flow of water (in m/s) is The value of Reynold's Number is The frictional loss in the pipe (in m) isarrow_forward
- 2. Castor oil flows through a pipe that has a cross-section of an equilateral triangle with a side length of 10 cm. The volume flow rate of the oil was measured to be 1.2 liters/second. The absolute viscosity of castor oil is about 650 cP. Calculate the Reynolds number and identify the type of flow.arrow_forwardEx. 2.11 A pump delivering 230 Ips of water whose absolute viscosity is 0.0114 Poise has a 300-mm diameter suction pipe and a 254-mm diameter discharge pipe as shown in the figure below. The suction pipe is 3.5 m long and the discharge pipe is 23 m long. The water is delivered 16 m above the intake water level. Considering the head losses in fittings and valves, find the head which the pump must supply. If the motor brake power of the driving motor is 75 kW, what is the efficiency of the pump? Assume the pipe material as cast iron. Given: A figure showing a pumping installation Q= 230 Ips D = 300 mm D = 254 mm H = 0.0114 Poise = 0.00114 Pa-s BP = 75 kW %3D %3D Standard elbow Standard elbow Discharge reservoir Long sweep elbow z=z, +2, Pump Source Foot valve & strainer Required: a) The total dynamic head b) The pump efficiency wilz,arrow_forwardShow complete solution and formulas used. Show the schematic diagram too. Calculate the required pipe diameter to avoid cavitation, if the pump delivers Q = 30US gallon/min water from a closed tank, where the pressure (above the water level) is p = 40kPa. The equivalent length of the smoothened concrete pipe on the suction side is 12m while the suction flange of the pump is 8m below the water level. The vapour pressure at the given water temperature is 2.8kPa. The required net positive suction head is NPSHr = 3.2m.arrow_forward
- A liquid of viscosity 5.2x10-5 Ibf-sec/ft? is flowing in a rectangular duct. The equation of the symmetrical velocity (in ft/s) is approximately V=0.3y0./ ft/s where y is in inches. Compute the shear stress of the fluid at y=3 inches from the wall.arrow_forwardAn oil with a specific gravity of 0.84 and a viscosity of 50 cp is flowing downwards in a vertical pipe of inside diameter 3 in. If the water-oil manometer connected to a pitot tube, shows a reading of 25 in, calculate the maximum velocity of the flow of oil in the pipe. Reynolds number of the flow of oil in the pipe. average velocity of the flow of oil in the pipe. piezometric head due to the pitot tube. volumetric flow rate of oil.arrow_forwardAn inclined pipe of 4-inch ID is used to transport a viscous oil from one open-top container A to another open-top container B. The specific gravity of the oil is 0.9 and the viscosity of the oil is 20 cp. The length of the pipe is 100 ft. Oil levels in these two containers are shallow and the inlet and outlet pressures across the tube can be assumed to be identical – both 1 atm. What is the angle needed to maintain a flow rate of oil of 1 cuft / second? The levels of oil in A and B do not change – oil is continually added to A at the rate of 1 cuft / second and is continuously removed from B at the same rate. Aarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY