Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780073398174
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10.9, Problem 35P
A steam power plant operates on an ideal reheat Rankine cycle between the pressure limits of 15 MPa and 10 kPa. The mass flow rate of steam through the cycle is 12 kg/s. Steam enters both stages of the turbine at 500°C. If the moisture content of the steam at the exit of the low-pressure turbine is not to exceed 5 percent, determine (a) the pressure at which reheating takes place, (b) the total rate of heat input in the boiler, and (c) the thermal efficiency of the cycle. Also, show the cycle on a T-s diagram with respect to saturation lines.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A steam power plant operates on the simple ideal Rankine cycle. The steam enters the
turbine at 4 MPa and 500°C and is condensed in the condenser at a temperature of 40°C. draw and label the schematic diagram and the pV and TS planes.
(a) Show the cycle on a T-s diagram. If the mass flow rate is 10 kg/s, determine
(b) the thermal efficiency of the cycle
(c) the net power output in kW.
A steam power plant operates according to the reheat Rankine cycle between the pressure limits of 15 MPa and 10 kPa. The mass flow rate of the steam circulating in the cycle is 12 kg/s. The steam enters both stages of the turbine at a temperature of 500 °C. The dryness fraction of the steam at the exit of the low-pressure turbine is 90%. Show the cycle on a T-s diagram, including the saturated liquid and saturated vapor lines. Also, determine: a) The pressure at which reheat occurs, b) The amount of heat supplied to the steam per unit time in the boiler, c) The thermal efficiency of the cycle.
Note: This is a question from the thermodynamics course. Please provide a clear and quick solution.
Consider a steam power plant operating on the ideal reheat Rankine cycle. Steam enters the high-pressure turbine at 15 MPa and 600°C and is condensed in the condenser at a pressure of 10 kPa. If the moisture content of the steam at the exit of the low-pressure turbine is not to exceed 10.4 percent, determine (a) the pressure at which the steam should be reheated and (b) the thermal efficiency of the cycle. Assume the steam is reheated to the inlet temperature of the high-pressure turbine
Chapter 10 Solutions
Thermodynamics: An Engineering Approach
Ch. 10.9 - Why is the Carnot cycle not a realistic model for...Ch. 10.9 - Prob. 2PCh. 10.9 - A steady-flow Carnot cycle uses water as the...Ch. 10.9 - A steady-flow Carnot cycle uses water as the...Ch. 10.9 - Consider a steady-flow Carnot cycle with water as...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - How do actual vapor power cycles differ from...Ch. 10.9 - The entropy of steam increases in actual steam...
Ch. 10.9 - Is it possible to maintain a pressure of 10 kPa in...Ch. 10.9 - 10–12 A steam power plant operates on a simple...Ch. 10.9 - 10–13 Refrigerant-134a is used as the working...Ch. 10.9 - 10–14 A simple ideal Rankine cycle which uses...Ch. 10.9 - 10–15E A simple ideal Rankine cycle with water as...Ch. 10.9 - Consider a 210-MW steam power plant that operates...Ch. 10.9 - Consider a 210-MW steam power plant that operates...Ch. 10.9 - A steam Rankine cycle operates between the...Ch. 10.9 - A steam Rankine cycle operates between the...Ch. 10.9 - Prob. 20PCh. 10.9 - Prob. 21PCh. 10.9 - A simple Rankine cycle uses water as the working...Ch. 10.9 - The net work output and the thermal efficiency for...Ch. 10.9 - A binary geothermal power plant uses geothermal...Ch. 10.9 - Consider a coal-fired steam power plant that...Ch. 10.9 - Show the ideal Rankine cycle with three stages of...Ch. 10.9 - How do the following quantities change when a...Ch. 10.9 - Consider a simple ideal Rankine cycle and an ideal...Ch. 10.9 - An ideal reheat Rankine cycle with water as the...Ch. 10.9 - 10–31 A steam power plant operates on the ideal...Ch. 10.9 - Steam enters the high-pressure turbine of a steam...Ch. 10.9 - 10–34 Consider a steam power plant that operates...Ch. 10.9 - A steam power plant operates on an ideal reheat...Ch. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Repeat Prob. 1041 assuming both the pump and the...Ch. 10.9 - Prob. 39PCh. 10.9 - How do open feedwater heaters differ from closed...Ch. 10.9 - How do the following quantities change when the...Ch. 10.9 - Prob. 43PCh. 10.9 - 10–44 The closed feedwater heater of a...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - 10–47 A steam power plant operates on an ideal...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider an ideal steam regenerative Rankine cycle...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - Repeat Prob. 1060, but replace the open feedwater...Ch. 10.9 - 10–57 An ideal Rankine steam cycle modified with...Ch. 10.9 - Prob. 58PCh. 10.9 - Prob. 59PCh. 10.9 - Prob. 60PCh. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Prob. 63PCh. 10.9 - Prob. 64PCh. 10.9 - The schematic of a single-flash geothermal power...Ch. 10.9 - Prob. 66PCh. 10.9 - Prob. 67PCh. 10.9 - Consider a cogeneration plant for which the...Ch. 10.9 - Prob. 69PCh. 10.9 - A large food-processing plant requires 1.5 lbm/s...Ch. 10.9 - Steam is generated in the boiler of a cogeneration...Ch. 10.9 - Consider a cogeneration power plant modified with...Ch. 10.9 - Steam is generated in the boiler of a cogeneration...Ch. 10.9 - Prob. 75PCh. 10.9 - Why is the combined gassteam cycle more efficient...Ch. 10.9 - The gas-turbine portion of a combined gassteam...Ch. 10.9 - Prob. 78PCh. 10.9 - Prob. 80PCh. 10.9 - Consider a combined gassteam power plant that has...Ch. 10.9 - Why is steam not an ideal working fluid for vapor...Ch. 10.9 - Prob. 86PCh. 10.9 - What is the difference between the binary vapor...Ch. 10.9 - Why is mercury a suitable working fluid for the...Ch. 10.9 - By writing an energy balance on the heat exchanger...Ch. 10.9 - Steam enters the turbine of a steam power plant...Ch. 10.9 - Prob. 91RPCh. 10.9 - A steam power plant operates on an ideal Rankine...Ch. 10.9 - Consider a steam power plant operating on the...Ch. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Repeat Prob. 1098 assuming both the pump and the...Ch. 10.9 - Consider an ideal reheatregenerative Rankine cycle...Ch. 10.9 - Prob. 97RPCh. 10.9 - Prob. 98RPCh. 10.9 - A textile plant requires 4 kg/s of saturated steam...Ch. 10.9 - Consider a cogeneration power plant that is...Ch. 10.9 - Prob. 101RPCh. 10.9 - Reconsider Prob. 10105E. It has been suggested...Ch. 10.9 - Reconsider Prob. 10106E. During winter, the system...Ch. 10.9 - Prob. 104RPCh. 10.9 - Prob. 105RPCh. 10.9 - Prob. 106RPCh. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - Show that the thermal efficiency of a combined...Ch. 10.9 - Prob. 113RPCh. 10.9 - Starting with Eq. 1020, show that the exergy...Ch. 10.9 - A solar collector system delivers heat to a power...Ch. 10.9 - Consider a simple ideal Rankine cycle. If the...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Prob. 120FEPCh. 10.9 - A simple ideal Rankine cycle operates between the...Ch. 10.9 - Prob. 122FEPCh. 10.9 - Prob. 123FEPCh. 10.9 - Consider a combined gas-steam power plant. Water...Ch. 10.9 - Pressurized feedwater in a steam power plant is to...Ch. 10.9 - Consider a steam power plant that operates on the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Consider a steam power plant operating on the ideal reheat Rankine cycle. Steam enters the high-pressure turbine at 15 MPa and 600°C and is con- densed in the condenser at a pressure of 10 kPa. If the moisture content of the steam at the exit of the low-pressure turbine is not to exceed 10.4 per- cent, determine lai the pressure at which the steam should be reheated and (b) the thermal efficiency of the cycle. Assume the steam is reheated to the inlet temperature of the high-pressure turbine.arrow_forwardA steam power plant operates on an ideal reheat Ran¬kine cycle between the pressure limits of 15 MPa and 10 kPa. The mass flow rate of steam through the cycle is 12 kg/s. Steam enters both stages of the turbine at 525°C. The moisture con¬tent of the steam at the exit of the low-pressure turbine is not to exceed 5 percent.Show the cycle on a T-s diagram with respect to saturation lines. determine:(a) the pressure at which reheating takes place, (b) the total rate of heat input in the boiler, and(c) the thermal efficiency of the cycle.arrow_forwardIf the thermal efficiency of a steam power plant operating on the simple ideal rankine cycle is 26% and the steam is condensed in the condenser at a pressure of 75 kpa and Enthalpy of the steam which leave the turbine is 3166 kj/kg. determine the steam conditions (pressure and temperature ) which enters the turbine of the power plant.arrow_forward
- A steam power plant operating in an ideal Rankine cycle with reheating is shown. Steam enters a high-pressure turbine at 16 MPa and 520°C. In reheating process, steam is reheated to 520°C again at the constant pressure of 8 MPa. If the condenser pressure is 6 kPa, • determine the enthalpy of the working fluid at the exit of the low pressure turbine • alculate the plant's thermal efficiency Boiler Turbine Condenserarrow_forwardConsider a steam power plant operating on the simple ideal Rankine cycle. The steam enters the turbine at 4 MPa, 400 degrees celcius and is condensed in the condenser at a pressure of 100 kPa. Draw the schematic and T-s diagram of the cycle and determine the following per unit mass of steam. (a) Turbine work (b) Pump work (c) Heat added in the boiler (d) Heat rejected in the condenser (e) Thermal efficiency of the cycle (f) Heat rate (g) Steam rate of the cyclearrow_forwardThe turbine of a steam power plant operating on a simple ideal Rankine cycle produces 500 kW of power when the boiler is operated at 3.5 MPa, the condenser at 40 kPa, and the temperature at the turbine entrance is 650oC. Determine: (a)the rate of heat supply in the boiler, (b)the rate of heat rejection in the condenser, and (c)the thermal efficiency of the cycle. Answers: (a) 1458 kW, (b) 958 kW, (c) 0.343arrow_forward
- A steam power plant operates on the simple ideal Rankine cycle. Steam enters the turbine at 4 MPa, 500 degrees celcius and is condensed in the condenser at a temperature of 40 degrees celcius. draw and label the schematic diagram and the pV and TS planes. (a) Show the cycle on a T-s diagram. If the mass flow rate is 10 kg/s, determine (b) the thermal efficiency of the cycle (c) the net power output in MW.arrow_forwardConsider a steam power plant operating on the ideal reheat Rankine cycle. Steam enters the high-pressure turbine at 15 MPa and 600 °C and is condensed in the condenser at a pressure of 10 kPa. Assuming the reheat temperature is also 600 °C and if the moisture content of the steam at the exit of the low-pressure turbine is not to exceed 10%, determine: The pressure at which steam should be reheated, P = MPa The amount of heat added, and heat rejected, Qa = kJ/kg Qr = kJ/kg The turbine work and pump work, and Wt = KJ/kg Wp = kJ/kg The thermal efficiency of the cycle e =arrow_forwardSteam Power Cycles: A steam power plant operates on a simple ideal Rankine cycle between the pressure limits of 1250 and 2 psia. The mass flow rate of steam through the cycle is 75 lbm/s. The moisture content of the steam at the turbine exit is not to exceed 10 percent. Show the cycle on a T-s diagram with respect to saturation lines, and determine (a) the minimum turbine inlet temperature, (b) the rate of heat input in the boiler, and (c) the thermal efficiency of the plant.arrow_forward
- Determine the heat transfer to cooling water passing through the condenser in KJ/Kg of steam condensedarrow_forwardA steam power plant operates on an ideal reheat Rankine cycle between the pressure limits of 15 MPa and 10 kPa. The mass flow rate of steam through the cycle is 12 kg/s. Steam enters both stages of the turbine at 500°C. The moisture content of the steam at the exit of the low-pressure turbine is not to exceed 5 percent. Determine a) the total rate of heat input in the boiler and b) the thermal efficiency of the cyclearrow_forwardConsider a steam power plant on an ideal Rankine cycle. Steam is at a pressure of 7MPa and and at a temperature of 470.90C when it leaves the boiler. It is condensed in the condenser at a pressure of 10kPa by cooling water flowing at a rate of 1800kg/s. Determine the percentage of dryness fraction of steam at the exit of the steam turbine (accurate to 2 decimal places, using the relevant equations) assuming that the cp of superheated steam is 2.966kJ/kg.K. Only the final answer to be entered in the answer field, no units to be entered.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY