Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780073398174
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10.9, Problem 90RP
Steam enters the turbine of a steam power plant that operates on a simple ideal Rankine cycle at a pressure of 6 MPa, and it leaves as a saturated vapor at 7.5 kPa. Heat is transferred to the steam in the boiler at a rate of 40,000 kJ/s. Steam is cooled in the condenser by the cooling water from a nearby river, which enters the condenser at 15°C. Show the cycle on a T-s diagram with respect to saturation lines, and determine (a) the turbine inlet temperature, (b) the net power output and thermal efficiency, and (c) the minimum mass flow rate of the cooling water required.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider a steam power plant operating on a simple ideal Rankine cycle. Steam enters the turbine at 15 MPa and 650°C and is condensed in the condenser at a pressure of 15 kPa. Determine the Qout (kJ/kg). (Use 2 decimal places for the final answer.)
A steam power plant operates on the simple ideal Rankine cycle. The steam enters the
turbine at 4 MPa and 500°C and is condensed in the condenser at a temperature of 40°C. draw and label the schematic diagram and the pV and TS planes.
(a) Show the cycle on a T-s diagram. If the mass flow rate is 10 kg/s, determine
(b) the thermal efficiency of the cycle
(c) the net power output in kW.
Please help me with this problem and show the full solution. Thank you very much
Chapter 10 Solutions
Thermodynamics: An Engineering Approach
Ch. 10.9 - Why is the Carnot cycle not a realistic model for...Ch. 10.9 - Prob. 2PCh. 10.9 - A steady-flow Carnot cycle uses water as the...Ch. 10.9 - A steady-flow Carnot cycle uses water as the...Ch. 10.9 - Consider a steady-flow Carnot cycle with water as...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - How do actual vapor power cycles differ from...Ch. 10.9 - The entropy of steam increases in actual steam...
Ch. 10.9 - Is it possible to maintain a pressure of 10 kPa in...Ch. 10.9 - 10–12 A steam power plant operates on a simple...Ch. 10.9 - 10–13 Refrigerant-134a is used as the working...Ch. 10.9 - 10–14 A simple ideal Rankine cycle which uses...Ch. 10.9 - 10–15E A simple ideal Rankine cycle with water as...Ch. 10.9 - Consider a 210-MW steam power plant that operates...Ch. 10.9 - Consider a 210-MW steam power plant that operates...Ch. 10.9 - A steam Rankine cycle operates between the...Ch. 10.9 - A steam Rankine cycle operates between the...Ch. 10.9 - Prob. 20PCh. 10.9 - Prob. 21PCh. 10.9 - A simple Rankine cycle uses water as the working...Ch. 10.9 - The net work output and the thermal efficiency for...Ch. 10.9 - A binary geothermal power plant uses geothermal...Ch. 10.9 - Consider a coal-fired steam power plant that...Ch. 10.9 - Show the ideal Rankine cycle with three stages of...Ch. 10.9 - How do the following quantities change when a...Ch. 10.9 - Consider a simple ideal Rankine cycle and an ideal...Ch. 10.9 - An ideal reheat Rankine cycle with water as the...Ch. 10.9 - 10–31 A steam power plant operates on the ideal...Ch. 10.9 - Steam enters the high-pressure turbine of a steam...Ch. 10.9 - 10–34 Consider a steam power plant that operates...Ch. 10.9 - A steam power plant operates on an ideal reheat...Ch. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Repeat Prob. 1041 assuming both the pump and the...Ch. 10.9 - Prob. 39PCh. 10.9 - How do open feedwater heaters differ from closed...Ch. 10.9 - How do the following quantities change when the...Ch. 10.9 - Prob. 43PCh. 10.9 - 10–44 The closed feedwater heater of a...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - 10–47 A steam power plant operates on an ideal...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider an ideal steam regenerative Rankine cycle...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - Repeat Prob. 1060, but replace the open feedwater...Ch. 10.9 - 10–57 An ideal Rankine steam cycle modified with...Ch. 10.9 - Prob. 58PCh. 10.9 - Prob. 59PCh. 10.9 - Prob. 60PCh. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Prob. 63PCh. 10.9 - Prob. 64PCh. 10.9 - The schematic of a single-flash geothermal power...Ch. 10.9 - Prob. 66PCh. 10.9 - Prob. 67PCh. 10.9 - Consider a cogeneration plant for which the...Ch. 10.9 - Prob. 69PCh. 10.9 - A large food-processing plant requires 1.5 lbm/s...Ch. 10.9 - Steam is generated in the boiler of a cogeneration...Ch. 10.9 - Consider a cogeneration power plant modified with...Ch. 10.9 - Steam is generated in the boiler of a cogeneration...Ch. 10.9 - Prob. 75PCh. 10.9 - Why is the combined gassteam cycle more efficient...Ch. 10.9 - The gas-turbine portion of a combined gassteam...Ch. 10.9 - Prob. 78PCh. 10.9 - Prob. 80PCh. 10.9 - Consider a combined gassteam power plant that has...Ch. 10.9 - Why is steam not an ideal working fluid for vapor...Ch. 10.9 - Prob. 86PCh. 10.9 - What is the difference between the binary vapor...Ch. 10.9 - Why is mercury a suitable working fluid for the...Ch. 10.9 - By writing an energy balance on the heat exchanger...Ch. 10.9 - Steam enters the turbine of a steam power plant...Ch. 10.9 - Prob. 91RPCh. 10.9 - A steam power plant operates on an ideal Rankine...Ch. 10.9 - Consider a steam power plant operating on the...Ch. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Repeat Prob. 1098 assuming both the pump and the...Ch. 10.9 - Consider an ideal reheatregenerative Rankine cycle...Ch. 10.9 - Prob. 97RPCh. 10.9 - Prob. 98RPCh. 10.9 - A textile plant requires 4 kg/s of saturated steam...Ch. 10.9 - Consider a cogeneration power plant that is...Ch. 10.9 - Prob. 101RPCh. 10.9 - Reconsider Prob. 10105E. It has been suggested...Ch. 10.9 - Reconsider Prob. 10106E. During winter, the system...Ch. 10.9 - Prob. 104RPCh. 10.9 - Prob. 105RPCh. 10.9 - Prob. 106RPCh. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - Show that the thermal efficiency of a combined...Ch. 10.9 - Prob. 113RPCh. 10.9 - Starting with Eq. 1020, show that the exergy...Ch. 10.9 - A solar collector system delivers heat to a power...Ch. 10.9 - Consider a simple ideal Rankine cycle. If the...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Prob. 120FEPCh. 10.9 - A simple ideal Rankine cycle operates between the...Ch. 10.9 - Prob. 122FEPCh. 10.9 - Prob. 123FEPCh. 10.9 - Consider a combined gas-steam power plant. Water...Ch. 10.9 - Pressurized feedwater in a steam power plant is to...Ch. 10.9 - Consider a steam power plant that operates on the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Steam enters the turbine of a steam power plant that operates on a simple ideal Rankine cycle at a pressure of 6 MPa, and it leaves as a saturated vapor at 7.5 kPa. Heat is transferred to the steam in the boiler at a rate of 40,000 kJ/s. Steam is cooled in the condenser by the cooling water from a nearby river, which enters the condenser at 158C. Show the cycle on a T-s diagram with respect to saturation lines, and determine (a) the turbine inlet temperature, (b) the net power output and thermal efficiency, and (c) the minimum mass flow rate of the cooling water required.arrow_forwardConsider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500C and is cooled in the condenser at a pressure of 10 kPa. Determine the mass flow rate of the stream (kg/s). (Use 2 decimal places for the final answer.)arrow_forwardA steam power plant operating in an ideal Rankine cycle with reheating is shown. Steam enters a high-pressure turbine at 16 MPa and 520°C. In reheating process, steam is reheated to 520°C again at the constant pressure of 8 MPa. If the condenser pressure is 6 kPa, • determine the enthalpy of the working fluid at the exit of the low pressure turbine • alculate the plant's thermal efficiency Boiler Turbine Condenserarrow_forward
- The pressure in the boiler of a steam power plant operating on the ideal Rankine cycle is 1250 psia. The condenser pressue is 2 psia. The mass flow rate of steam through the system is 75 lbm/s and the quality of the steam at the turbine exit is 0.9. Show the cycle on a T-s diagram, and determine (a) the turbine inlet temperature, (b) the rate of heat input in the boiler, and (c) the thermal efficiency of the cycle.arrow_forwardB- Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine at 3 MPa and 350 °C and is condensed in the condenser at a pressure of 75 kPa. Determine the thermal efficiency of this cycle.arrow_forwardA steam power plant operates on a Rankine cycle. Steam enters the turbine at 1,000 psia and 1,200 F and is cooled in the condenser at a pressure of 2 psia. The power out of the turbine is 5.0E8 Btu/hr and the mass flow rate of the steam going through the turbine is 262 Ibm/s. In the question that follows, select the answer that is closest to the true value. What is the enthalpy of the steam at the turbine exit in units of Btu/lbm? O 859 O 1090 O 976 O 759 O o o oarrow_forward
- Consider a steam power plant operating on the simple ideal Rankine cycle. The steam enters the turbine at 4 MPa, 400 degrees celcius and is condensed in the condenser at a pressure of 100 kPa. Draw the schematic and T-s diagram of the cycle and determine the following per unit mass of steam. (a) Turbine work (b) Pump work (c) Heat added in the boiler (d) Heat rejected in the condenser (e) Thermal efficiency of the cycle (f) Heat rate (g) Steam rate of the cyclearrow_forwardRequired information Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 5 kPa. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the quality of the steam at the turbine exit. Use steam tables. The quality of the steam at the turbine exit isarrow_forwardConsider a steam power plant that operates on a simple Ideal Rankine cycle and has a net power output of 120 MW. Steam enters the turbine at 10 MPa and 550° c and is cooled in the condenser at a pressure of 15 kPa by running cooling water from a nearby source the condenser at a rate of 3000 kg/s. Determine the Enthalpy at the outlet of the pump h2arrow_forward
- I need the answer quicklyarrow_forwardConsider a steam power plant that operates on a simple ideal Rankine cycle and has a net power output of 45MW. Steam enters the turbine at 7 MPa and 500 ˚C and is cooled in the condenser at a pressure of 10kPa by running cooling water from a lake through the tubes of the condenser at a rate of 2000 kg/s. Show the schematic diagram of the power plant and draw the cycle on a T-s diagram with respect to saturation lines. Also, determine (a) the thermal efficiency of the cycle, (b) the mass flow rate of the steam, and (c) the rise in temperature of the cooling water. Repeat your calculations assuming an isentropic efficiency of 85 and 90 for the turbine and the pump, respectively.arrow_forwardA steam Rankine cycle operates between the pressure limits of 1500 psia in the boiler and 2 psia in the condenser. The turbine inlet temperature is 800F. The turbine isentropic efficiency is 90 percent, the pump losses are negligible, and the cycle is sized to produce 2500 kW of power. Calculate the mass flow rate through the boiler, the power produced by the turbine, the rate of heat supply in the boiler, and the thermal efficiency.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY