![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9780073398174/9780073398174_largeCoverImage.gif)
(a)
The ratio of mass flow rate of air to mass flow rate of steam in the combined power cycle
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 78P
The ratio of mass flow rate of air to mass flow rate of steam in the combined power cycle is
Explanation of Solution
Draw the T-s diagram for the combined gas-steam power cycle.
Write the expression for the relation relative pressure and ideal pressure.
Here, the relative pressure at state 9 is
Write the expression for the efficiency of compressor.
Refer to properties table of air, and interpret the value of
Write the expression for the relation relative pressure and ideal pressure.
Here, the relative pressure at state 11 is
Write the expression for the efficiency of turbine.
Write the expression for the specific work input of pump I to the system/
Write the expression for the enthalpy of steam at state 2.
Write the expression for the specific work input of pump II to the system/
Write the expression for the enthalpy of steam at state 4.
Write the expression for the quality of steam at state 6s.
Here, specific entropy of wet steam at 0.6 MPa is
Write the expression for the specific enthalpy of steam at state 6s.
Here, specific enthalpy of wet steam at
Write the expression for the efficiency of turbine.
Write the expression for the quality of steam at state 7s.
Here, specific entropy of wet steam at 20 kPa is
Write the expression for the specific enthalpy of steam at state 7s.
Here, specific enthalpy of wet steam at
Write the expression for the efficiency of turbine.
Write the expression for the energy balance equation for the heat exchanger.
Rewrite Equation (1) and rearrange the terms with mass and enthalpy terms.
Here, mass flow rate of steam is
Conclusion:
Refer Table A-17, “Ideal-gas properties of air”, select the relative pressure
Substitute 1.386 kPa for
Refer Table A-17, “Ideal-gas properties of air”, interpret the value of the enthalpy
Refer Table A-17, “Ideal-gas properties of air”, select the relative pressure
Substitute 450.5 kPa for
Refer Table A-17 “Ideal-gas properties of air , interpret the value of
Refer Table A-5, “saturated water-Pressure table”, select the enthalpy
Substitute
Substitute
Refer Table A-5, “saturated water-Pressure table”, select the enthalpy
Substitute
Substitute
Refer Table A-5, “Superheated water”, select the enthalpy
Since, the entropy at state 5 is equal to state 6s, so the entropy value of
Interpret the value of
Substitute
Refer to steam tables, and interpret the value of
Substitute
Since, the entropy at state 5 is equal to the entropy at state 7, the entropy value of
Refer Table A-5, “Saturated water-Pressure table”, obtain the value of
Substitute
Refer Table A-5, “Saturated water-Pressure table”, obtain the value of
Substitute
Substitute
Thus, the ratio of mass flow rate of air to mass flow rate of steam in the combined power cycle is
(b)
The rate of heat input in the combustion chamber.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 78P
The rate of heat input in the combustion chamber is
Explanation of Solution
Write the expression for the energy balance equation for the open feed water heater.
Rewrite Equation (3) and rearrange the terms with mass and enthalpy terms.
Here, fraction of steam extracted is y.
Write the expression for the specific power output of the turbine.
Write the expression for the specific net work output from the steam.
Write the expression for the specific net work output from the gas stream.
Write the expression for the net work output per unit mass of gas.
Write the expression for the mass flow rate of air.
Write the expression for the rate of heat input to the cycle.
Conclusion:
Substitute
Substitute 0.86 for
Substitute
Substitute
Substitute
Substitute
Substitute
Thus, the rate of heat input in the combustion chamber is
(c)
The thermal efficiency of the combined power cycle
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 78P
The thermal efficiency of the combined power cycle is
Explanation of Solution
Write the expression for the thermal efficiency of the combined power cycle.
Conclusion:
Substitute
Thus, the thermal efficiency of the combined power cycle is
Want to see more full solutions like this?
Chapter 10 Solutions
Thermodynamics: An Engineering Approach
- (read image)arrow_forwardQu 2 Schematically plot attractive, repulsive, and net energies versus interatomic separation for two atoms or ions. Note on this plot the equilibrium separation (distance) ro and the bonding energy Eo. Qu 3 How many atoms (or molecules) are in one mole of the substance? Qu 4 Mole, in the context of this book, is taken in units of gram-mole. On this basis, how many atoms are there in a pound-mole of a substance? Qu 5 The atomic radii of Mg* and F ions are 0.072 and 0.133 nm, respectively. Calculate the force of attraction between these two ions at their equilibrium interionic separation (i.e., when the ions just touch one another). What is the force of repulsion at this same separation distance?show all work step by step problems formulaarrow_forwardQu 4 Silver has FCC crystal structure at room temperature, and a lattice constant, a, of 0.407 nm. Draw a reduced sphere silver unit cell in the grids provided below, clearly label the lattice dimensions. Within the unit cell you drew, shade the (1 0 0) plane. How many atoms are contained within the (1 0 0) plane? Calculate the area of (1 0 0) plane in [nm?]. Express your answer in [nm?] to three significant figures. Calculate the planar density of the (1 0 0) plane in [atoms/nm?]. Express the answer in atoms/nm to three significant figures. show all work step by steparrow_forward
- Can I get help on this question?arrow_forwardDuring some actual expansion and compression processes in piston–cylinder devices, the gases have been observed to satisfy the relationship PVn = C, where n and C are constants. Calculate the work done when a gas expands from 350 kPa and 0.03 m3 to a final volume of 0.2 m3 for the case of n = 1.5. The work done in this case is kJ.arrow_forwardCarbon dioxide contained in a piston–cylinder device is compressed from 0.3 to 0.1 m3. During the process, the pressure and volume are related by P = aV–2, where a = 6 kPa·m6. Calculate the work done on carbon dioxide during this process. The work done on carbon dioxide during this process is kJ.arrow_forward
- The volume of 1 kg of helium in a piston–cylinder device is initially 5 m3. Now helium is compressed to 3 m3 while its pressure is maintained constant at 130 kPa. Determine the initial and final temperatures of helium as well as the work required to compress it, in kJ. The gas constant of helium is R = 2.0769 kJ/kg·K. The initial temperature of helium is K. The final temperature of helium is K. The work required to compress helium is kJ.arrow_forwardA piston-cylinder device initially contains 0.4 kg of nitrogen gas at 160 kPa and 140°C. Nitrogen is now expanded isothermally to a pressure of 80 kPa. Determine the boundary work done during this process. The properties of nitrogen are R= 0.2968 kJ/kg-K and k= 1.4. N₂ 160 kPa 140°C The boundary work done during this process is KJ.arrow_forward! Required information An abrasive cutoff wheel has a diameter of 5 in, is 1/16 in thick, and has a 3/4-in bore. The wheel weighs 4.80 oz and runs at 11,700 rev/min. The wheel material is isotropic, with a Poisson's ratio of 0.20, and has an ultimate strength of 12 kpsi. Choose the correct equation from the following options: Multiple Choice о σmax= (314) (4r2 — r²) - о σmax = p² (3+) (4r² + r²) 16 σmax = (314) (4r² + r²) σmax = (314) (4² - r²)arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)