Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780073398174
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10.9, Problem 96RP
Consider an ideal reheat–regenerative Rankine cycle with one open feedwater heater. The boiler pressure is 10 MPa, the condenser pressure is 15 kPa, the reheater pressure is 1 MPa, and the feedwater pressure is 0.6 MPa. Steam enters both the high- and low-pressure turbines at 500°C. Show the cycle on a T-s diagram with respect to saturation lines, and determine (a) the fraction of steam extracted for regeneration and (b) the thermal efficiency of the cycle.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please help me with this problem and show the full solution.
An ideal Rankine cycle with one stage of reheat utilizes steam as working medium. Boiler
pressure is 4 MPa, the boiler exit temperature is 400°C, and the condenser pressure is 10 kPa.
The reheat takes place at 0.4 MPa and the steam leaves the reheater at 400°C. (Enthalpies are
in KJ/kg.). Determine the thermal efficiency of the cycle. Determine also the thermal
efficiency if there is no reheater.
The thermal efficiency is:
Select one:
O a. 35.60%
O b. 36.73%
O c. 37.50%
O d. 33.75%
An ideal Rankine cycle with one stage of reheat utilizes steam as working medium. Boiler
pressure is 4 MPa, the boiler exit temperature is 400°C, and the condenser pressure is 10 kPa.
The reheat takes place at 0.4 MPa and the steam leaves the reheater at 400°C. (Enthalpies are
in KJ/kg.). Determine the thermal efficiency of the cycle. Determine also the thermal
efficiency if there is no reheater.
Without the reheater, the thermal efficiency is:
Select one:
O a. 35.29%
O b. 32.95%
O c. 34.51%
O d. 33.15%
Chapter 10 Solutions
Thermodynamics: An Engineering Approach
Ch. 10.9 - Why is the Carnot cycle not a realistic model for...Ch. 10.9 - Prob. 2PCh. 10.9 - A steady-flow Carnot cycle uses water as the...Ch. 10.9 - A steady-flow Carnot cycle uses water as the...Ch. 10.9 - Consider a steady-flow Carnot cycle with water as...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - How do actual vapor power cycles differ from...Ch. 10.9 - The entropy of steam increases in actual steam...
Ch. 10.9 - Is it possible to maintain a pressure of 10 kPa in...Ch. 10.9 - 10–12 A steam power plant operates on a simple...Ch. 10.9 - 10–13 Refrigerant-134a is used as the working...Ch. 10.9 - 10–14 A simple ideal Rankine cycle which uses...Ch. 10.9 - 10–15E A simple ideal Rankine cycle with water as...Ch. 10.9 - Consider a 210-MW steam power plant that operates...Ch. 10.9 - Consider a 210-MW steam power plant that operates...Ch. 10.9 - A steam Rankine cycle operates between the...Ch. 10.9 - A steam Rankine cycle operates between the...Ch. 10.9 - Prob. 20PCh. 10.9 - Prob. 21PCh. 10.9 - A simple Rankine cycle uses water as the working...Ch. 10.9 - The net work output and the thermal efficiency for...Ch. 10.9 - A binary geothermal power plant uses geothermal...Ch. 10.9 - Consider a coal-fired steam power plant that...Ch. 10.9 - Show the ideal Rankine cycle with three stages of...Ch. 10.9 - How do the following quantities change when a...Ch. 10.9 - Consider a simple ideal Rankine cycle and an ideal...Ch. 10.9 - An ideal reheat Rankine cycle with water as the...Ch. 10.9 - 10–31 A steam power plant operates on the ideal...Ch. 10.9 - Steam enters the high-pressure turbine of a steam...Ch. 10.9 - 10–34 Consider a steam power plant that operates...Ch. 10.9 - A steam power plant operates on an ideal reheat...Ch. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Repeat Prob. 1041 assuming both the pump and the...Ch. 10.9 - Prob. 39PCh. 10.9 - How do open feedwater heaters differ from closed...Ch. 10.9 - How do the following quantities change when the...Ch. 10.9 - Prob. 43PCh. 10.9 - 10–44 The closed feedwater heater of a...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - 10–47 A steam power plant operates on an ideal...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider an ideal steam regenerative Rankine cycle...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - Repeat Prob. 1060, but replace the open feedwater...Ch. 10.9 - 10–57 An ideal Rankine steam cycle modified with...Ch. 10.9 - Prob. 58PCh. 10.9 - Prob. 59PCh. 10.9 - Prob. 60PCh. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Prob. 63PCh. 10.9 - Prob. 64PCh. 10.9 - The schematic of a single-flash geothermal power...Ch. 10.9 - Prob. 66PCh. 10.9 - Prob. 67PCh. 10.9 - Consider a cogeneration plant for which the...Ch. 10.9 - Prob. 69PCh. 10.9 - A large food-processing plant requires 1.5 lbm/s...Ch. 10.9 - Steam is generated in the boiler of a cogeneration...Ch. 10.9 - Consider a cogeneration power plant modified with...Ch. 10.9 - Steam is generated in the boiler of a cogeneration...Ch. 10.9 - Prob. 75PCh. 10.9 - Why is the combined gassteam cycle more efficient...Ch. 10.9 - The gas-turbine portion of a combined gassteam...Ch. 10.9 - Prob. 78PCh. 10.9 - Prob. 80PCh. 10.9 - Consider a combined gassteam power plant that has...Ch. 10.9 - Why is steam not an ideal working fluid for vapor...Ch. 10.9 - Prob. 86PCh. 10.9 - What is the difference between the binary vapor...Ch. 10.9 - Why is mercury a suitable working fluid for the...Ch. 10.9 - By writing an energy balance on the heat exchanger...Ch. 10.9 - Steam enters the turbine of a steam power plant...Ch. 10.9 - Prob. 91RPCh. 10.9 - A steam power plant operates on an ideal Rankine...Ch. 10.9 - Consider a steam power plant operating on the...Ch. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Repeat Prob. 1098 assuming both the pump and the...Ch. 10.9 - Consider an ideal reheatregenerative Rankine cycle...Ch. 10.9 - Prob. 97RPCh. 10.9 - Prob. 98RPCh. 10.9 - A textile plant requires 4 kg/s of saturated steam...Ch. 10.9 - Consider a cogeneration power plant that is...Ch. 10.9 - Prob. 101RPCh. 10.9 - Reconsider Prob. 10105E. It has been suggested...Ch. 10.9 - Reconsider Prob. 10106E. During winter, the system...Ch. 10.9 - Prob. 104RPCh. 10.9 - Prob. 105RPCh. 10.9 - Prob. 106RPCh. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - Show that the thermal efficiency of a combined...Ch. 10.9 - Prob. 113RPCh. 10.9 - Starting with Eq. 1020, show that the exergy...Ch. 10.9 - A solar collector system delivers heat to a power...Ch. 10.9 - Consider a simple ideal Rankine cycle. If the...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Prob. 120FEPCh. 10.9 - A simple ideal Rankine cycle operates between the...Ch. 10.9 - Prob. 122FEPCh. 10.9 - Prob. 123FEPCh. 10.9 - Consider a combined gas-steam power plant. Water...Ch. 10.9 - Pressurized feedwater in a steam power plant is to...Ch. 10.9 - Consider a steam power plant that operates on the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- An ideal Rankine cycle with one stage of reheat utilizes steam as working medium. Boiler pressure is 4 MPa, the boiler exit temperature is 400°C, and the condenser pressure is 10 kPa. The reheat takes place at 0.4 MPa and the steam leaves the reheater at 400°C. (Enthalpies are in KJ/kg.). Determine the thermal efficiency of the cycle. Determine also the thermal efficiency if there is no reheater. The quality at the exhaust of the low pressure turbine is: Select one: O a. 13% O b. 97% O c. 3% O d. 87%arrow_forwardAn ideal reheat 210 MW Rankine cycle with water as the working fluid operates the boiler at 15 MPa, the reheater at 2 MPa, and the condenser at 10 kPa. The temperature is 500 0C at the entrance of the high-pressure and low-pressure turbines. Determine (a) the quality of the steam at the low-pressure turbine exit, (b) the thermal efficiency of this system, and (c) the rate of heat transfer in the reheater.arrow_forward3) An ideal Rankine cycle with superheat and reheat has steam entering the turbine at 10 MPa and 440 °C. The steam is extracted and sent to the reheater at a pressure of 1.5 MPa, and returns to the turbine at 440 °C. The condenser pressure is 20 kPa. The cycle produces 400 MW of net power. Determine (a) the qualities of steam at (i) high pressure turbine exit, and (ii) low pressure turbine exit (b) the thermal efficiency, in % (c) the rate of heat transfer, into the working fluid as it passes through the boiler, in MW (d) the rate of heat transfer, from the condensing steam as it passes through the condenser, in MW (e) the mass flow rate of the condenser cooling water, in kg/ h, if cooling water enters the condenser at 12 Cand exits at 37 Carrow_forward
- Consider a steam power plant that operates on a reheat Rankine cycle and has a net power output of 80 MW. Steam enters the high-pressure turbine at 10 MPa and 500°C and the low-pressure turbine at 1.4 MPa and 500°C. Steam leaves the condenser as a saturated liquid at a pressure of 10 kPa. Assume both turbine and compressor are isentropic. Show the cycle on a T-s diagram with respect to saturation lines.arrow_forwardPlease solve this Prolem and show the written solution. Thank you very mucharrow_forwardRequired information. The net work output and the thermal efficiency for the Carnot and the simple ideal Rankine cycles with steam as the working fluid are to be calculated and compared. Steam enters the turbine in both cases at 10 MPa as a saturated vapor, and the condenser pressure is 50 kPa. In the Rankine cycle, the condenser exit state is saturated liquid and, in the Carnot cycle, the boiler inlet state is saturated liquid. Draw the T-s diagrams for both cycles. (Please upload your response/solution using the controls below.) upload a response file (15MB max) Choose File no file selected savearrow_forward
- Hi! im having issues with this problem, thanks or the help! a 210 MW steam power plant operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500o C and is cooled in the condenser to a pressure of 20 kPa. Show the cycle on a T-s diagram with respect to the saturation lines and determine (a) the quality of steam at the turbine exit, (b) the thermal efficiency of the cycle, and (c) the mass flow rate of the steam.arrow_forwardA simple ideal Rankine cycle with water as the working fluid operates between the pressure limits of 3 MPa in the boiler and 30 kPa in the condenser. If the quality at the exit of the turbine cannot be less than 79 percent, what is the maximum thermal efficiency this cycle can have? Use steam tables. The maximum thermal efficiency isarrow_forwardQI) Consider a steam power plant that operates on a simple ideal Rankine cycle and has a net power output of 45 MW. Steam enters the turbine at 6 MPa and 500°C and is cooled in the condenser at a pressure of 20 kPa by running cooling water from a lake through the tubes of the condenser at a rate of 2000 kg/s. Show the cycle on a T-s diagram with respect to saturation lines, and determine: The thermal efficiency of the cycle?arrow_forward
- please Solve this problem and show the full solution. Thank you very mucharrow_forwardA power plant is to be operated on an ideal Rankine cycle with the superheatedsteam exiting the boiler at 4 MPa and 500°C. Calculate the thermal efficiencyand the quality at the turbine outlet if the condenser pressure is (a) 20 kPa,(b) 10 kPa, and (c) 8 kPa.arrow_forwardConsider a steam power plant operating on the ideal Rankine cycle. Steam enters the turbine at 3 MPa and 350°C and is condensed in the condenser at a pressure of 10 kPa. Determine the thermal efficiency of this powerplant (%) Note: Include your T - S diagram on your solution. Clear and no Erasures.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY