* 10.107 In a diesel engine, the fuel is ignited when it is injected into hot compressed air, heated by the compression itself. In a typical high-speed diesel engine, the chamber in the cylinder has a diameter of 10.7 cm and a length of 13.4 cm. On compression, the length of the chamber is shortened by 12.7 cm (a “5-inch stroke”). The compression of the air changes its pressure from 1.00 to 34.0 atm. The temperature of the air before compression is 364 K. As a result of the compression, what will be the final air temperature (in K and °C ) just before the fuel injection?
* 10.107 In a diesel engine, the fuel is ignited when it is injected into hot compressed air, heated by the compression itself. In a typical high-speed diesel engine, the chamber in the cylinder has a diameter of 10.7 cm and a length of 13.4 cm. On compression, the length of the chamber is shortened by 12.7 cm (a “5-inch stroke”). The compression of the air changes its pressure from 1.00 to 34.0 atm. The temperature of the air before compression is 364 K. As a result of the compression, what will be the final air temperature (in K and °C ) just before the fuel injection?
*10.107 In a diesel engine, the fuel is ignited when it is injected into hot compressed air, heated by the compression itself. In a typical high-speed diesel engine, the chamber in the cylinder has a diameter of 10.7 cm and a length of 13.4 cm. On compression, the length of the chamber is shortened by 12.7 cm (a “5-inch stroke”). The compression of the air changes its pressure from 1.00 to 34.0 atm. The temperature of the air before compression is 364 K. As a result of the compression, what will be the final air temperature (in K and
°C
) just before the fuel injection?
In the solid state, oxalic acid occurs as
a dihydrate with the formula H2C2O4
C+2H2O. Use this formula to
calculate the formula weight of oxalic
acid. Use the calculated formula
weight and the number of moles
(0.00504mol)
of oxalic acid in each titrated
unknown sample recorded in Table
6.4 to calculate the number of grams
of pure oxalic acid dihydrate
contained in each titrated unknown
sample.
1.
Consider a pair of elements with 2p and 4p valence orbitals (e.g., N and Se). Draw their
(2p and 4p AO's) radial probability plots, and sketch their angular profiles. Then, consider these
orbitals from the two atoms forming a homonuclear л-bond. Which element would have a
stronger bond, and why?
(4 points)
Write the reaction and show the mechanism of the reaction. Include the mechanism
for formation of the NO2+
2. Explain, using resonance structures, why the meta isomer is formed. Draw possible
resonance structures for ortho, meta and para.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Step by Step Stoichiometry Practice Problems | How to Pass ChemistryMole Conversions Made Easy: How to Convert Between Grams and Moles; Author: Ketzbook;https://www.youtube.com/watch?v=b2raanVWU6c;License: Standard YouTube License, CC-BY