Chemistry: The Molecular Nature of Matter
7th Edition
ISBN: 9781118516461
Author: Neil D. Jespersen, Alison Hyslop
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 62RQ
Interpretation Introduction
Interpretation:
The volume of nitrogen gas in milliliters, formed in the reaction at a given temperature and pressure is to be calculated.
Concept Introduction:
The effect of temperature and pressure on the volume of a gas is given by an equation called the ideal gas equation. It is expressed as:
Here, is the pressure, is the volume, is the number of moles, is the gas constant, and is the temperature.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
Chemistry: The Molecular Nature of Matter
Ch. 10 - Prob. 1PECh. 10 - Prob. 2PECh. 10 - Prob. 3PECh. 10 - Prob. 4PECh. 10 - Prob. 5PECh. 10 - Prob. 6PECh. 10 - Prob. 7PECh. 10 - Prob. 8PECh. 10 - Prob. 9PECh. 10 - Prob. 10PE
Ch. 10 - Practice Exercise 10.11 How many grams of argon...Ch. 10 - Prob. 12PECh. 10 - Practice Exercise 10.13
The label on a cylinder of...Ch. 10 - A glass bulb is found to have a volume of 544.23...Ch. 10 - Sulfur dioxide is a gas that has been used in...Ch. 10 - Radon, a radioactive gas, is formed in one step of...Ch. 10 - Practice Exercise 10.17
A gaseous compound of...Ch. 10 - A compound composed of only carbon and hydrogen...Ch. 10 - Carbon disulfide is an extremely flammable liquid....Ch. 10 - In one lab, thegas-collecting apparatus used a gas...Ch. 10 - The explosive PETN, pentaerythritoltetranitrate,...Ch. 10 - Prob. 22PECh. 10 - Suppose you prepared a sample of nitrogen and...Ch. 10 - A 2.50 L sample of methane was collected over...Ch. 10 - Suppose a mixture containing 2.15 g H2 and 34.0 g...Ch. 10 - Sulfur dioxide and oxygen react according to the...Ch. 10 - Bromine has two isotopes with masses of 78.9 and...Ch. 10 - The hydrogen halide gases all have the same...Ch. 10 - Prob. 1RQCh. 10 - Prob. 2RQCh. 10 - Prob. 3RQCh. 10 - Prob. 4RQCh. 10 - Prob. 5RQCh. 10 - Prob. 6RQCh. 10 - Prob. 7RQCh. 10 - What is meant by an ideal gas? Under what...Ch. 10 - Prob. 9RQCh. 10 - Prob. 10RQCh. 10 - Prob. 11RQCh. 10 - Prob. 12RQCh. 10 - Prob. 13RQCh. 10 - Prob. 14RQCh. 10 - Prob. 15RQCh. 10 - Prob. 16RQCh. 10 - Prob. 17RQCh. 10 - Prob. 18RQCh. 10 - Prob. 19RQCh. 10 - Prob. 20RQCh. 10 - Prob. 21RQCh. 10 - Prob. 22RQCh. 10 - Prob. 23RQCh. 10 - Prob. 24RQCh. 10 - Prob. 25RQCh. 10 - Prob. 26RQCh. 10 - Prob. 27RQCh. 10 - Prob. 28RQCh. 10 - Prob. 29RQCh. 10 - Prob. 30RQCh. 10 - What does a small value for the van der Waals...Ch. 10 - Which of the molecules below has the larger value...Ch. 10 - Under the same conditions of T and V, why is the...Ch. 10 - Prob. 34RQCh. 10 - Carry out the following unit conversions: (a) 1.26...Ch. 10 - Prob. 36RQCh. 10 - Prob. 37RQCh. 10 - 10.38 What is the pressure in atm of each of the...Ch. 10 - 10.39 An open-end manometer containing mercury was...Ch. 10 - Prob. 40RQCh. 10 - Prob. 41RQCh. 10 - An open-end mercury manometer was connected to a...Ch. 10 - Prob. 43RQCh. 10 - 10.44 Suppose a gas is in a vessel connected to...Ch. 10 - Prob. 45RQCh. 10 - Prob. 46RQCh. 10 - Prob. 47RQCh. 10 - Prob. 48RQCh. 10 - Prob. 49RQCh. 10 - Prob. 50RQCh. 10 - A sample of helium at a pressure of 74$ torr and...Ch. 10 - When a sample of neon with a volume of 648 mL and...Ch. 10 - What must be the new volume of a sample of...Ch. 10 - When 286 mL of oxygen at 741 torr and 18.0C was...Ch. 10 - A sample of argon with a volume of 6.18 L, a...Ch. 10 - Prob. 56RQCh. 10 - How many milliliters of O2 are consumed in the...Ch. 10 - How many milliliters of oxygen are required to...Ch. 10 - *10.59 How many milliliters of measured at and...Ch. 10 - How many milliliters of H2O vapor, measured at...Ch. 10 - Prob. 61RQCh. 10 - Prob. 62RQCh. 10 - Prob. 63RQCh. 10 - Prob. 64RQCh. 10 - Prob. 65RQCh. 10 - Prob. 66RQCh. 10 - Prob. 67RQCh. 10 - Prob. 68RQCh. 10 - Prob. 69RQCh. 10 - 10.70 Methane is formed in landfills by the action...Ch. 10 - A chemist isolated a gas in a glass bulb with a...Ch. 10 - Prob. 72RQCh. 10 - 10.73 To three significant figures, calculate the...Ch. 10 - To three significant figures, calculate the...Ch. 10 - 10.75 What density does oxygen have at and 742...Ch. 10 - At 748.0 torr and 20.65C, what is the density of...Ch. 10 - The explosive PETN, pentaerythritol tetranitrate,...Ch. 10 - TNT, trinitrotoluene, is an explosive that can...Ch. 10 - Propylene, C3H6, reacts with hydrogen under...Ch. 10 - Nitric acid is formed when NO2 is dissolved in...Ch. 10 - A mixture of gases contains 315 torr N2, 275 torr...Ch. 10 - Prob. 82RQCh. 10 - A 1.00 L container was filled by pumping into it...Ch. 10 - A special gas mixture, BAR 97 High without NO, is...Ch. 10 - Prob. 85RQCh. 10 - Prob. 86RQCh. 10 - A 22.4 L container at 0C contains 0.300 mol N2,...Ch. 10 - A mixture of N2,O2,andCO2 Has a total pressure of...Ch. 10 - A 0.200 mol sample of a mixture of N2 and CO2 with...Ch. 10 - A sample of carbon monoxide was prepared and...Ch. 10 - Prob. 91RQCh. 10 - What volume of wet oxygen would you have to...Ch. 10 - Prob. 93RQCh. 10 - Prob. 94RQCh. 10 - Prob. 95RQCh. 10 - 10.96 For the gases which gas will effuse the...Ch. 10 - Prob. 97RQCh. 10 - Prob. 98RQCh. 10 - Uranium hexafluoride is a white solid that readily...Ch. 10 - Prob. 100RQCh. 10 - Prob. 101RQCh. 10 - A typical automobile has a weight of approximately...Ch. 10 - *10.103 Suppose you were planning to move a house...Ch. 10 - Prob. 104RQCh. 10 - Two flasks (which we will refer to as flask 1 and...Ch. 10 - *10.106 A bubble of air escaping from a divers...Ch. 10 - *10.107 In a diesel engine, the fuel is ignited...Ch. 10 - *10.108 Early one cool (60.0F) morning you start...Ch. 10 - Prob. 109RQCh. 10 - *10.110 A mixture was prepared in a 0.500 L...Ch. 10 - *10.111 A student collected 18.45 mL of H2 over...Ch. 10 - *10.112 A mixture of gases is prepared from 87.5 g...Ch. 10 - 10.113 A gas was found to have a density of...Ch. 10 - *10.114 In one analytical procedure for...Ch. 10 - Prob. 115RQCh. 10 - Prob. 116RQCh. 10 - Prob. 117RQCh. 10 - The odor of a rotten egg is caused by hydrogen...Ch. 10 - Chlorine reacts with sulfite ion to give sulfate...Ch. 10 - *10.120 In an experiment designed to prepare a...Ch. 10 - Carbon dioxide can be made in the lab by the...Ch. 10 - 10.122 Boron forms a variety of unusual compounds...Ch. 10 - Prob. 123RQCh. 10 - Carbon dioxide is implicated in global warming....Ch. 10 - Prob. 125RQCh. 10 - One of the that is implicated in decreasing the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- You have two pressure-proof steel cylinders of equal volume, one containing 1.0 kg of CO and the other containing 1.0 kg of acetylene, C2H2. (a) In which cylinder is the pressure greater at 25 C? (b) Which cylinder contains the greater number of molecules?arrow_forwardPyruvic acid, HC3H3O3, is involved in cell metabolism. It can be assayed for (that is, the amount of it determined) by using a yeast enzyme. The enzyme makes the following reaction go to completion: HC3H3O3(aq)C2H4O(aq)+CO2(g) If a sample containing pyruvic acid gives 21.2 mL of carbon dioxide gas, CO2, at 349 mmHg and 30C, how many grams of pyruvic acid are there in the sample?arrow_forward47 HCl(g) reacts with ammonia gas, NH3(g), to form solid ammonium chloride. If a sample of ammonia occupying 250 mL at 21 C and a pressure of 140 torr is allowed to react with excess HCl, what mass of NH4Cl will form?arrow_forward
- If equal masses of O2 and N2 are placed in separate containers of equal volume at the same temperature, which of the following statements is true? If false, explain why it is false. (a) The pressure in the flask containing N2 is greater than that in the flask containing O2. (b) There are more molecules in the flask containing O2 than in the flask containing N2.arrow_forwardIn the Mthode Champenoise, grape juice is fermented in a wine bottle to produce sparkling wine. The reaction is C6H12O6(aq)2C2H5OH(aq)+2CO2(g) Fermentation of 750. mL grape juice (density = 1.0 g/cm3) is allowed to take place in a bottle with a total volume of 825 mL until 12% by volume is ethanol (C2H5OH). Assuming that the CO2 is insoluble in H2O (actually, a wrong assumption), what would be the pressure of CO2 inside the wine bottle at 25C? (The density of ethanol is 0.79 g/cm3.)arrow_forwardA person exhales about 5.8 102 L of carbon dioxide per day (at STP). The carbon dioxide exhaled by an astronaut is absorbed from the air of a space capsule by reaction with lithium hydroxide, LiOH. 2LiOH(s)+CO2(g)Li2CO3(s)+H2O(l) How many grams of lithium hydroxide are required per astronaut per day?arrow_forward
- Raoul Pictet, the Swiss physicist who first liquefied oxygen, attempted to liquefy hydrogen. He heated potassium formate, KCHO2, with KOH in a closed 2.50-Lvessel. KCHO2(s)+KOH(s)K2CO3(s)+H2(g) If 75.0 g of potassium formate reacts in a 2.50-L vessel, which was initially evacuated, what pressure of hydrogen will be attained when the temperature is finally cooled to 25C? Use the preceding chemical equation and ignore the volume of solid product.arrow_forward5-111 Diving, particularly SCUBA (Self-Contained Underwater Breathing Apparatus) diving, subjects the body to increased pressure. Each 10. m (approximately 33 ft) of water exerts an additional pressure of 1 atm on the body. (a) What is the pressure on the body at a depth of 100. ft? (b) The partial pressure of nitrogen gas in air at 1 atm is 593 mm Hg. Assuming a SCUBA diver breathes compressed air, what is the partial pressure of nitrogen entering the lungs from a breathing tank at a depth of 100. ft? (c) The partial pressure of oxygen gas in the air at 2 atm is 158 mm Hg. What is the partial pressure of oxygen in the air in the lungs at a depth of 100. ft? (d) Why is it absolutely essential to exhale vigorously in a rapid ascent from a depth of 100. ft?arrow_forwardLiquid oxygen was first prepared by heating potassium chlorate, KClO3, in a closed vessel to obtain oxygen at high pressure. The oxygen was cooled until it liquefied. 2KClO3(s)2KCl(s)+3O2(g) If 171 g of potassium chlorate reacts in a 2.70-L vessel, which was initially evacuated, what pressure of oxygen will be attained when the temperature is finally cooled to 25C? Use the preceding chemical equation and ignore the volume of solid product.arrow_forward
- You have a 550.-mL tank of gas with a pressure of 1.56 atm at 24 C. You thought the gas was pure carbon monoxide gas, CO, but you later found it was contaminated by small quantities of gaseous CO2 and O2. Analysis shows that the tank pressure is 1.34 atm (at 24 C) if the CO2 is removed. Another experiment shows that 0.0870 g of O2 can be removed chemically. What are the masses of CO and CO2 in the tank, and what is the partial pressure of each of the three gases at 25 C?arrow_forwardConsider the following sketch. Each square in bulb A represents a mole of atoms X. Each circle in bulb B represents a mole of atoms Y. The bulbs have the same volume, and the temperature is kept constant. When the valve is opened, atoms of X react with atoms of Y according to the following equation: 2X(g)+Y(g)X2Y(g)The gaseous product is represented as and each represents one mole of product. (a) IfP A=2.0 atm, what is P8 before the valve is opened and the reaction is allowed to occur? What is P A+P B? (b) Redraw the sketch to represent what happens after the valve is opened. (c) What is PA? What is PB? What is P A+P B? Compare your answer with the answer in part (a).arrow_forwardA mixture contained zinc sulfide, ZnS, and lead sulfide, PbS. A sample of the mixture weighing 6.12 g was reacted with an excess of hydrochloric acid. The reactions are ZnS(s)+2HCL(aq)ZnCl2(aq)+H2S(g)PbS(s)+2HCL(aq)PbCl2(aq)+H2S(g) If the sample reacted completely and produced 1.049 L of hydrogen sulfide, H2S, at 23C and 762 mmHg, what were the percentages of ZnS and PbS in the mixture?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning