Chemistry: The Molecular Nature of Matter
7th Edition
ISBN: 9781118516461
Author: Neil D. Jespersen, Alison Hyslop
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 29RQ
Interpretation Introduction
Interpretation:
The dependence of rate of effusion of a gas on temperature and pressure is to be explained.
Concept Information:
Gases exhibit random, rapid, and constant motion of large number subatomic particles.
In a gas present in a container, pressure arises due to the collision of the gas particles with the walls of the container.
Kinetic energy of the gas molecules is directly proportional to the temperature.
Effusion refers to the movement of gas particles through a small hole from high concentration to low concentration.
Graham's Law states that the effusion rate of a gas is inversely proportional to the square root of the mass of its particles
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
Chemistry: The Molecular Nature of Matter
Ch. 10 - Prob. 1PECh. 10 - Prob. 2PECh. 10 - Prob. 3PECh. 10 - Prob. 4PECh. 10 - Prob. 5PECh. 10 - Prob. 6PECh. 10 - Prob. 7PECh. 10 - Prob. 8PECh. 10 - Prob. 9PECh. 10 - Prob. 10PE
Ch. 10 - Practice Exercise 10.11 How many grams of argon...Ch. 10 - Prob. 12PECh. 10 - Practice Exercise 10.13
The label on a cylinder of...Ch. 10 - A glass bulb is found to have a volume of 544.23...Ch. 10 - Sulfur dioxide is a gas that has been used in...Ch. 10 - Radon, a radioactive gas, is formed in one step of...Ch. 10 - Practice Exercise 10.17
A gaseous compound of...Ch. 10 - A compound composed of only carbon and hydrogen...Ch. 10 - Carbon disulfide is an extremely flammable liquid....Ch. 10 - In one lab, thegas-collecting apparatus used a gas...Ch. 10 - The explosive PETN, pentaerythritoltetranitrate,...Ch. 10 - Prob. 22PECh. 10 - Suppose you prepared a sample of nitrogen and...Ch. 10 - A 2.50 L sample of methane was collected over...Ch. 10 - Suppose a mixture containing 2.15 g H2 and 34.0 g...Ch. 10 - Sulfur dioxide and oxygen react according to the...Ch. 10 - Bromine has two isotopes with masses of 78.9 and...Ch. 10 - The hydrogen halide gases all have the same...Ch. 10 - Prob. 1RQCh. 10 - Prob. 2RQCh. 10 - Prob. 3RQCh. 10 - Prob. 4RQCh. 10 - Prob. 5RQCh. 10 - Prob. 6RQCh. 10 - Prob. 7RQCh. 10 - What is meant by an ideal gas? Under what...Ch. 10 - Prob. 9RQCh. 10 - Prob. 10RQCh. 10 - Prob. 11RQCh. 10 - Prob. 12RQCh. 10 - Prob. 13RQCh. 10 - Prob. 14RQCh. 10 - Prob. 15RQCh. 10 - Prob. 16RQCh. 10 - Prob. 17RQCh. 10 - Prob. 18RQCh. 10 - Prob. 19RQCh. 10 - Prob. 20RQCh. 10 - Prob. 21RQCh. 10 - Prob. 22RQCh. 10 - Prob. 23RQCh. 10 - Prob. 24RQCh. 10 - Prob. 25RQCh. 10 - Prob. 26RQCh. 10 - Prob. 27RQCh. 10 - Prob. 28RQCh. 10 - Prob. 29RQCh. 10 - Prob. 30RQCh. 10 - What does a small value for the van der Waals...Ch. 10 - Which of the molecules below has the larger value...Ch. 10 - Under the same conditions of T and V, why is the...Ch. 10 - Prob. 34RQCh. 10 - Carry out the following unit conversions: (a) 1.26...Ch. 10 - Prob. 36RQCh. 10 - Prob. 37RQCh. 10 - 10.38 What is the pressure in atm of each of the...Ch. 10 - 10.39 An open-end manometer containing mercury was...Ch. 10 - Prob. 40RQCh. 10 - Prob. 41RQCh. 10 - An open-end mercury manometer was connected to a...Ch. 10 - Prob. 43RQCh. 10 - 10.44 Suppose a gas is in a vessel connected to...Ch. 10 - Prob. 45RQCh. 10 - Prob. 46RQCh. 10 - Prob. 47RQCh. 10 - Prob. 48RQCh. 10 - Prob. 49RQCh. 10 - Prob. 50RQCh. 10 - A sample of helium at a pressure of 74$ torr and...Ch. 10 - When a sample of neon with a volume of 648 mL and...Ch. 10 - What must be the new volume of a sample of...Ch. 10 - When 286 mL of oxygen at 741 torr and 18.0C was...Ch. 10 - A sample of argon with a volume of 6.18 L, a...Ch. 10 - Prob. 56RQCh. 10 - How many milliliters of O2 are consumed in the...Ch. 10 - How many milliliters of oxygen are required to...Ch. 10 - *10.59 How many milliliters of measured at and...Ch. 10 - How many milliliters of H2O vapor, measured at...Ch. 10 - Prob. 61RQCh. 10 - Prob. 62RQCh. 10 - Prob. 63RQCh. 10 - Prob. 64RQCh. 10 - Prob. 65RQCh. 10 - Prob. 66RQCh. 10 - Prob. 67RQCh. 10 - Prob. 68RQCh. 10 - Prob. 69RQCh. 10 - 10.70 Methane is formed in landfills by the action...Ch. 10 - A chemist isolated a gas in a glass bulb with a...Ch. 10 - Prob. 72RQCh. 10 - 10.73 To three significant figures, calculate the...Ch. 10 - To three significant figures, calculate the...Ch. 10 - 10.75 What density does oxygen have at and 742...Ch. 10 - At 748.0 torr and 20.65C, what is the density of...Ch. 10 - The explosive PETN, pentaerythritol tetranitrate,...Ch. 10 - TNT, trinitrotoluene, is an explosive that can...Ch. 10 - Propylene, C3H6, reacts with hydrogen under...Ch. 10 - Nitric acid is formed when NO2 is dissolved in...Ch. 10 - A mixture of gases contains 315 torr N2, 275 torr...Ch. 10 - Prob. 82RQCh. 10 - A 1.00 L container was filled by pumping into it...Ch. 10 - A special gas mixture, BAR 97 High without NO, is...Ch. 10 - Prob. 85RQCh. 10 - Prob. 86RQCh. 10 - A 22.4 L container at 0C contains 0.300 mol N2,...Ch. 10 - A mixture of N2,O2,andCO2 Has a total pressure of...Ch. 10 - A 0.200 mol sample of a mixture of N2 and CO2 with...Ch. 10 - A sample of carbon monoxide was prepared and...Ch. 10 - Prob. 91RQCh. 10 - What volume of wet oxygen would you have to...Ch. 10 - Prob. 93RQCh. 10 - Prob. 94RQCh. 10 - Prob. 95RQCh. 10 - 10.96 For the gases which gas will effuse the...Ch. 10 - Prob. 97RQCh. 10 - Prob. 98RQCh. 10 - Uranium hexafluoride is a white solid that readily...Ch. 10 - Prob. 100RQCh. 10 - Prob. 101RQCh. 10 - A typical automobile has a weight of approximately...Ch. 10 - *10.103 Suppose you were planning to move a house...Ch. 10 - Prob. 104RQCh. 10 - Two flasks (which we will refer to as flask 1 and...Ch. 10 - *10.106 A bubble of air escaping from a divers...Ch. 10 - *10.107 In a diesel engine, the fuel is ignited...Ch. 10 - *10.108 Early one cool (60.0F) morning you start...Ch. 10 - Prob. 109RQCh. 10 - *10.110 A mixture was prepared in a 0.500 L...Ch. 10 - *10.111 A student collected 18.45 mL of H2 over...Ch. 10 - *10.112 A mixture of gases is prepared from 87.5 g...Ch. 10 - 10.113 A gas was found to have a density of...Ch. 10 - *10.114 In one analytical procedure for...Ch. 10 - Prob. 115RQCh. 10 - Prob. 116RQCh. 10 - Prob. 117RQCh. 10 - The odor of a rotten egg is caused by hydrogen...Ch. 10 - Chlorine reacts with sulfite ion to give sulfate...Ch. 10 - *10.120 In an experiment designed to prepare a...Ch. 10 - Carbon dioxide can be made in the lab by the...Ch. 10 - 10.122 Boron forms a variety of unusual compounds...Ch. 10 - Prob. 123RQCh. 10 - Carbon dioxide is implicated in global warming....Ch. 10 - Prob. 125RQCh. 10 - One of the that is implicated in decreasing the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- If 4.83 mL of an unknown gas effuses through a hole in a plate in the same time it takes 9.23 mL of argon, Ar, to effuse through the same hole under the same conditions, what is the molecular weight of the unknown gas?arrow_forwardA sample of a smoke stack emission was collected into a 1.25-L tank at 752 mm Hg and analyzed. The analysis showed 92% CO2, 3.6% NO, 1.2% SO2, and 4.1% H2O by mass. What is the partial pressure exerted by each gas?arrow_forwardperform stoichiometric ca1cu1uions for reactions involving gases as reactants or products.arrow_forward
- What is the ratio of the average kinetic energy of a SO2 molecule to that of an O2 molecule in a mixture of two gases? What is the ratio of the root mean square speeds, urms, of the two gases?arrow_forwardGiven that a sample of air is made up of nitrogen, oxygen, and argon in the mole fractions 0.78 N2, 0.21 O2, and 0.010 Ar, what is the density of air at standard temperature and pressure?arrow_forward50 The first step in processing zinc metal from its ore, ZnS, is to react it with O2 according to the reaction 2ZnS(s)+3O2(g)2ZnO(s)+2SO2(g) If 620 kg of ZnS is to be reacted, what volume of oxygen at 0.977 atm 34.0 C is needed (at a minimum) to carry out this reaction?arrow_forward
- A 275-mL sample of CO gas is collected over water at 31C and 755 mmHg. If the temperature of the gas collection apparatus rises to 39C, what is the new volume of the sample? Assume that the barometric pressure does not change.arrow_forwardStarting with the definition of rate of effusion and Graham’s finding relating rate and molar mass, show how to derive the Graham’s law equation, relating the relative rates of effusion for two gases to their molecular masses.arrow_forwardSulfur trioxide, SO3, is produced in enormous quantities each year for use in the synthesis of sulfuric acid. S(s)+O2(g)SO2(g)2SO2(g)+O2(g)2SO3(g) What volume of O2(g) at 350.C and a pressure of 5.25 atm is needed to completely convert 5.00 g sulfur to sulfur trioxide?arrow_forward
- A 19.9-mL volume of a hydrochloric acid solution reacts completely with a solid sample of magnesium carbonate, producing 183 mL of CO2 that is collected over water at 24.0C and 738 torr total pressure. The reaction is 2HCl(aq)+MgCO3(s)CO2(g)+H2O(l)+MgCl2(aq) What is the molarity of the HCl solution?arrow_forwardOne molecule of hemoglobin will combine with four molecules of oxygen. If 1.0 g of hemoglobin combines with 133 mL of oxygen at body temperature (37 C) and a pressure of 743 tort, what is the molar mass of hemoglobin?arrow_forwardA mixture of chromium and zinc weighing 0.362 g was reacted with an excess of hydrochloric acid. After all the metals in the mixture reacted, 225 mL dry of hydrogen gas was collected at 27C and 750. torr. Determine the mass percent of Zn in the metal sample. [Zinc reacts with hydrochloric acid to produce zinc chloride and hydrogen gas; chromium reacts with hydrochloric acid to produce chromium(III) chloride and hydrogen gas.]arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning