Concept explainers
A thin-walled cylindrical container of diameter
(a) For the portion of the wall covered with the condensate film, derive an equation for the average temperature of the container wall,
(b) At what rate is heat supplied to liquid-A?
(c) Assuming the container is initially filled completely with liquid, that is,
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
Fundamentals of Heat and Mass Transfer
Additional Engineering Textbook Solutions
Statics and Mechanics of Materials (5th Edition)
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Engineering Mechanics: Dynamics (14th Edition)
Thermodynamics: An Engineering Approach
Applied Fluid Mechanics (7th Edition)
- Handwrite pleasearrow_forwardEstimate the power required to boil the water in a copper pan (Cs,f = 0.013 and n = 1), 180 mm in diameter. The bottom of the pan is maintained at 115 ℃ by the heating element of an electric range. Properties of Water (1 atm): Tsat = 100℃, ρl = 957.9 kg/m3, ρv = 0.5955 kg/m3, Cpl = 4217 J/kg.K, μl = 279*10^-6 N.s/m2, Prl = 1.76, hfg = 2257 kJ/kg, σ = 58.9*10^-3 N/m. Select one: a. 16420 W b. 18166 W c. 16240 W d. 11760 Warrow_forwardAnalyze the condensation process using both chillers. Provide operating temperatures and pressures entering each component shown in the diagram (at points 1, 2, 3, 4). Indicate which chiller should be chosen based on the economics. See below for details: -Your work is replacing a chiller that is used as part of a distillation process that condenses methanol (boiling point = 65 °C). Your task is to select the most economical type of system. A conventional chiller will have a lower first cost and will have lower maintenance costs than one that involves enhanced heat transfer surfaces, but the chiller with enhanced surfaces will condense the same amount of alcohol with a lower energy consumption. Select the appropriate chiller by considering the net present value of both systems. That value will involve the first cost of the chiller, and the present value of the maintenance and energy costs. The chiller uses a standard vapor-compression refrigeration cycle with R-22 (see Figure 1). For…arrow_forward
- need soon all parts don't copy I will downvotearrow_forwardDiscuss the technical points on pressure- temperature diagram for condensate gas reservoir and explainarrow_forwardQuestion 3 Which statement about vaporization enthalpy and condensation enthalpy is correct? O The condensation enthalpy is equal in magnitude but opposite in sign when compared to the vaporization enthalpy O There is no general relationship between these two quantities and the values depend on the substance involved. O The vaporization enthalpy is always less than the condensation enthalpy. O The vaporization enthalpy is exactly equal to the condensation enthalpy.arrow_forward
- A steam trap is a device to purge steam condensate from a system without venting uncondensed steam. In one of the crudest trap types, the condensate collects and raises a float attached to a drain plug. Whenthe float reaches a certain level, it “pulls the plug,” opening the drain valve and allowing the liquid to discharge. The float then drops down to its original position and the valve closes, preventing uncondensed steam from escaping.(a) Suppose saturated steam at 25 bar is used to heat 100 kg/min of an oil from 135°C to 185°C. Heat must be transferred to the oil at a rate of 1:00 x 10 4 kJ/min to accomplish this task. The steam condenses on the exterior of a bundle of tubes through which the oil is flowing. Condensate collectsin the bottom of the exchanger and exits through a steam trap set to discharge when 1200 g of liquid is collected. How often does the trap discharge?(b) Especially when periodic maintenance checks are not performed, steam traps often fail to close completely…arrow_forwardUse the Kedzierski (2003) refrigerant/lubricant mixture pool boiling model to predict the boiling heat transfer coefficient (hm) for a range of superheats (4T, = 8 K to 40 K) and Ts = 277.6 K: 5.9×107(1−x,)ph ATk, (1-e*) x, To Where 1₂ %₁ = = 9m T-T Г x Τσ PL-Pbx 5.9×107(1-x₂)ph AT 0.755lp₁ (1-x₁) _ 18.75õ₁ (1—x₁) _ 18.75×10¯¹º[m]p, (1-x₂) Xp Prv XpPrv XpPrv Assume that λ = 1.34 for xb=0.005 and that λ = 0.3 for Xb = 0.02. The properties of the refrigerant (R123) at the film temperature are: KL (W/mK) 0.139 R123 Or (N/m) 179692.3 0.01764 hfg (J/kg) The properties of the mineral oil (lubricant) are: PL (kg/m³) 917.8 York-C VL (cSt) 60 Prv (kg/m³) 2.701 VL (m²/s) 6 × 10-5 OL (N/m) 0.026 1.) Plot hm vs ATs and le vs ATs for two lubricant mass fractions: x = 0.005 (use 2 = 1.34 for Xb = = 0.005) and x = 0.02 (use λ = 0.3 for xb = 0.02). Compare the predicted ro for the two mass fraction cases. Provide a plausible reason for why the boiling heat transfer coefficient for a given AT's for…arrow_forwardOnly answer if you are 100% sure otherwise i will downvote... An ASTM B75 copper tube sheathes a heating element that is used to boil water at 1254 kPa. The copper tube is immersed horizontally in the water, and its surface is polished. The tube diameter and length are 5 mm and 9.5 cm, respectively. The maximum use temperature for ASTM B75 copper tube is 204°C. Determine the highest evaporation rate of water that can be achieved by the heater without heating the tube surface above the maximum use temperature. Use the property tables to calculate the properties of water at saturation temperature. The surface tension 0 at 190°C is 0.03995 N/m. Also, Csf 0.0130 and 10 for the boiling water on a polished copper surface. The highest evaporation rate of water is g/s?arrow_forward
- Pre-lab 8: Cold Engine The experimental setup for this week's lab consists of a syringe connected to a metal can (reservoir), a cold bath (water - ice mixture) and a "hot" bath (water at room temperature). A schematics of the syringe - reservoir system is shown below. Plunger of mass m Filled with gas (air) Syringe of volume Vcor VH - Volume Vo includes tube + Metal can -Metal can submerged in water of temperature Тс or TH. Tube Stopper Figure 1: Schematic of the syringe - reservoir system. The syringe is essentially a glass cylinder fitted with a movable piston (plunger). The markings on the syringe indicate the volume of gas in the syringe, but do not include the additional, unknown volume, Vo, in the gas can and tubing.arrow_forwardOn a hot humid summer day, the air can be considered saturated steam at 950C. If you were to take an ice-cold beverage (40C) from the cooler, you would notice drop-wise condensation on the side of the can forming. What is the condensation heat transfer coefficient for the cold can? Assume the can is 12-cm tall and has a diameter of 8-cm.arrow_forwardDiscuss the technical points on pressure- temperature diagram for CONDENSATE reservoir in detail. Note: write with type written, write the answer in detail and if you can give diagram and photosarrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning