Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 10.12P
(a)
To determine
The power required to boil the water pan.
The evaporation rate.
The ratio of surface heat flux to the critical heat flux.
The pan temperature required to achieve the critical heat flux.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What are the surface condensing systems? Explain their working.
Water is to be boiled at atmospheric pressure in a polished copper pan placed on top of a
heating unit. The diameter of the bottom of the pan is 00.2 m. If during 30 minutes the water
level is dropped by 0.1 m, calculate the inner surface of the bottom of the pan.
Assumptions 1 Steady operating conditions exist. 2 Heat losses from the heater and the pan
are negligible 3 The boiling regime is nucleate boiling.
Note. Write your answer step by step and clearly explain your work. You need to upload a
file.
Explain the cooling effect of evaporation in terms of latent heat of vaporization.
Chapter 10 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 10 - Show that, for water at 1-atm pressure with...Ch. 10 - The surface of a horizontal. 7-mm-diameter...Ch. 10 - The role of surface tension in bubble formation...Ch. 10 - Estimate the heat transfer coefficient, h,...Ch. 10 - Prob. 10.5PCh. 10 - Prob. 10.6PCh. 10 - Prob. 10.7PCh. 10 - Prob. 10.8PCh. 10 - Calculate the critical heat flux on a large...Ch. 10 - Prob. 10.11P
Ch. 10 - Prob. 10.12PCh. 10 - Prob. 10.13PCh. 10 - Prob. 10.15PCh. 10 - Prob. 10.16PCh. 10 - Consider a gas-fired boiler in which five coiled,...Ch. 10 - Prob. 10.18PCh. 10 - Prob. 10.19PCh. 10 - Prob. 10.20PCh. 10 - Prob. 10.22PCh. 10 - Prob. 10.24PCh. 10 - Prob. 10.25PCh. 10 - A small copper sphere, initially at a uniform,...Ch. 10 - Prob. 10.28PCh. 10 - A disk-shaped turbine rotor is heat-treated by...Ch. 10 - A steel bar, 20 mm in diameter and 200 mm long,...Ch. 10 - Electrical current passes through a horizontal....Ch. 10 - Consider a horizontal. D=1 -mm-diameter platinum...Ch. 10 - Prob. 10.34PCh. 10 - Prob. 10.35PCh. 10 - Prob. 10.36PCh. 10 - Prob. 10.37PCh. 10 - A polished copper sphere of 10-mm diameter,...Ch. 10 - Prob. 10.39PCh. 10 - Prob. 10.40PCh. 10 - Consider refrigerant R-134a flowing in a smooth,...Ch. 10 - Determine the tube diameter associated with p=1...Ch. 10 - Saturated steam at 0.1 bar condenses with a...Ch. 10 - Prob. 10.45PCh. 10 - Prob. 10.46PCh. 10 - Prob. 10.47PCh. 10 - Prob. 10.48PCh. 10 - Prob. 10.50PCh. 10 - Prob. 10.53PCh. 10 - The condenser of a steam power plant consists of...Ch. 10 - Prob. 10.56PCh. 10 - Prob. 10.61PCh. 10 - Prob. 10.62PCh. 10 - A technique for cooling a multichip module...Ch. 10 - Determine the rate of condensation on a 100-mm...Ch. 10 - Prob. 10.66PCh. 10 - Prob. 10.67PCh. 10 - Prob. 10.70PCh. 10 - Prob. 10.71PCh. 10 - Prob. 10.74PCh. 10 - Prob. 10.75PCh. 10 - A thin-walled cylindrical container of diameter D...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- a film-type condenser consists of a packed bed of 3-cm diameter spheres with a voidage of 35%. water sprayed onto the bed at 60oC is used to condense steam entering at the base at a saturation temperature of 100oC. How deep must the bed be to ensure complete condensation of the steam, and what is the outlet temperature of the water? (Use water properties based on the mean of the inlet and outlet water temperatures, and iterate if necessary)arrow_forwardAnalyze the condensation process using both chillers. Provide operating temperatures and pressures entering each component shown in the diagram (at points 1, 2, 3, 4). Indicate which chiller should be chosen based on the economics. See below for details: -Your work is replacing a chiller that is used as part of a distillation process that condenses methanol (boiling point = 65 °C). Your task is to select the most economical type of system. A conventional chiller will have a lower first cost and will have lower maintenance costs than one that involves enhanced heat transfer surfaces, but the chiller with enhanced surfaces will condense the same amount of alcohol with a lower energy consumption. Select the appropriate chiller by considering the net present value of both systems. That value will involve the first cost of the chiller, and the present value of the maintenance and energy costs. The chiller uses a standard vapor-compression refrigeration cycle with R-22 (see Figure 1). For…arrow_forwardEstimate the power required to boil the water in a copper pan (Cs,f = 0.013 and n = 1), 180 mm in diameter. The bottom of the pan is maintained at 115 ℃ by the heating element of an electric range. Properties of Water (1 atm): Tsat = 100℃, ρl = 957.9 kg/m3, ρv = 0.5955 kg/m3, Cpl = 4217 J/kg.K, μl = 279*10^-6 N.s/m2, Prl = 1.76, hfg = 2257 kJ/kg, σ = 58.9*10^-3 N/m. Select one: a. 16420 W b. 18166 W c. 16240 W d. 11760 Warrow_forward
- AH of vaporization of water is 439.2 cal/g at the normal boing point. Since virus can survive at 404.39 K by forming spores. Most virus spores die at 851.9 K. Hence, autoclaves used to sterilize medical and laboratory instruments are pressurized to raise the boiling point of water to 851.9 K. Find out at what InP (torr) does water boil at 851.9 K? O a. 8460.435 O b. 940.048 c. 1880.097 O d. 2.474arrow_forwardHandwrite pleasearrow_forwardWhat is condensation and when does occurs? How does filmwise condensation differs from drop-wise condensation? Which type has a higher heat transfer film coefficient and point out the reason thereof?arrow_forward
- A vertical condenser composed of ½” and 1.5” Std Steel pipes will handle cyclohexane vapor condensing at 1 atm inside the small pipe. Assume water as the cooling medium at an average temperature of 70oC and heat transfer coefficient of 3000 W/m2 -K. Assuming film type condensation, what is the mass rate of cyclohexane if the exchanger is 1.5 m long?arrow_forwardSaturated, pure steam at a temperature of 170 oC condenses on the outer surface of avertical tube of outer diameter 2 cm and length 1.5 m. The tube surface is maintained at auniform temperature of 150 oC.Calculate:a) the local film condensation heat-transfer coefficient at the bottom of the tube. b) the average condensation heat-transfer coefficient over the entire length of the tube. c) the total condensation rate at the tube surface.arrow_forwardWill the largest condensation heat transfer coefficient always be obtained for a horizontal finned tube with the maximum possible fpm?arrow_forward
- Saturated, pure steam at a temperature of 170 oC condenses on the outer surface of a vertical tube of outer diameter 2 cm and length 1.5 m. The tube surface is maintained at a uniform temperature of 150 oC. Calculate: the local film condensation heat-transfer coefficient at the bottom of the tube. the average condensation heat-transfer coefficient over the entire length of the tube. the total condensation rate at the tube surface.arrow_forwardI need help on this question: (This question requires the use of Roger & Mayhew Steam Property Tables) Saturated steam at 1 atm is condensed on the external surface of a copper tube withan outside diameter 16 mm and tube wall of thickness 0.5 mm. The tube is cooledinternally by water with a mass flow rate of 0.06 kg/s, which in turn is raised intemperature from 15 oC to 60 oC as it flows through the tube. (Take the heat-transfer coefficient at the condensing side as 10.0 kW/m2K and the isobaric specific heat-capacity of water as 4180 J/kg K.) a) To calculate the heat transfer rate to the cooling water b) To calculate the length of the tube c) Comment on how to enhance heat transfer in this case.arrow_forwardA spray condenser is to be used to condense steam at a pressure of 0.105 bar (Tat using water at 27° C. The injection velocity of the drops is 6 m/s and their mean diameter is 2 mm. How long must the condenser vessel be to achieve 95% utilization of the cooling water? (Use vapor properties at 320 K and liquid properties at 310 K.) 320 K)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license