Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 10, Problem 10.48P
To determine
The expression for the ratioof the heat transfer coefficient average over the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Determine the heat absorbed, when 1 mol of carbon monoxide gas is heated from 212.4 K to 437.2 K. The relationship for the heat capacity at constant pressure in J mol-1 K-1 is Cp = a + bT + cT2, with a = 25, b = 7.0 x 10^-3, and c = -8 x 10^-7
Determine the quantity (volume) of saline water in a steam generator. The heat energy of 1592 kJ is supplied to saline water in the steam generator to heat from 26ºC to 119ºC for the generation of water vapor, Take the density & specific heat of the solution as 1030 kg/m3 & 3.2 J/kgºK respectively.
Solution:
Change in Temperature (in K)
Answer for part 1
Mass of the saltwater (in kg)Answer for part 2
Quantity (Volume) of saltwater (in m3)
Answer for part 3
P2
Chapter 10 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 10 - Show that, for water at 1-atm pressure with...Ch. 10 - The surface of a horizontal. 7-mm-diameter...Ch. 10 - The role of surface tension in bubble formation...Ch. 10 - Estimate the heat transfer coefficient, h,...Ch. 10 - Prob. 10.5PCh. 10 - Prob. 10.6PCh. 10 - Prob. 10.7PCh. 10 - Prob. 10.8PCh. 10 - Calculate the critical heat flux on a large...Ch. 10 - Prob. 10.11P
Ch. 10 - Prob. 10.12PCh. 10 - Prob. 10.13PCh. 10 - Prob. 10.15PCh. 10 - Prob. 10.16PCh. 10 - Consider a gas-fired boiler in which five coiled,...Ch. 10 - Prob. 10.18PCh. 10 - Prob. 10.19PCh. 10 - Prob. 10.20PCh. 10 - Prob. 10.22PCh. 10 - Prob. 10.24PCh. 10 - Prob. 10.25PCh. 10 - A small copper sphere, initially at a uniform,...Ch. 10 - Prob. 10.28PCh. 10 - A disk-shaped turbine rotor is heat-treated by...Ch. 10 - A steel bar, 20 mm in diameter and 200 mm long,...Ch. 10 - Electrical current passes through a horizontal....Ch. 10 - Consider a horizontal. D=1 -mm-diameter platinum...Ch. 10 - Prob. 10.34PCh. 10 - Prob. 10.35PCh. 10 - Prob. 10.36PCh. 10 - Prob. 10.37PCh. 10 - A polished copper sphere of 10-mm diameter,...Ch. 10 - Prob. 10.39PCh. 10 - Prob. 10.40PCh. 10 - Consider refrigerant R-134a flowing in a smooth,...Ch. 10 - Determine the tube diameter associated with p=1...Ch. 10 - Saturated steam at 0.1 bar condenses with a...Ch. 10 - Prob. 10.45PCh. 10 - Prob. 10.46PCh. 10 - Prob. 10.47PCh. 10 - Prob. 10.48PCh. 10 - Prob. 10.50PCh. 10 - Prob. 10.53PCh. 10 - The condenser of a steam power plant consists of...Ch. 10 - Prob. 10.56PCh. 10 - Prob. 10.61PCh. 10 - Prob. 10.62PCh. 10 - A technique for cooling a multichip module...Ch. 10 - Determine the rate of condensation on a 100-mm...Ch. 10 - Prob. 10.66PCh. 10 - Prob. 10.67PCh. 10 - Prob. 10.70PCh. 10 - Prob. 10.71PCh. 10 - Prob. 10.74PCh. 10 - Prob. 10.75PCh. 10 - A thin-walled cylindrical container of diameter D...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A cylindrical liquid oxygen (LOX) tank has a diameter of 1.22 m, a length of 6.1 m, and hemispherical ends. The boiling point of LOX is -179.4C. An insulation is sought that will reduce the boil-off rate in the steady state to no more than 11.3 kg/h. The heat of vaporization of LOX is 214 kJ/kg. If the thickness of this insulation is to be no more than 7.5 cm, what would the value of its thermal conductivity have to be?arrow_forward8.2 From its definition and from the property values in Appendix 2, Table 13, calculate the coefficient of thermal expansion, , for saturated water at 403 K. Then compare your results with the value in the table.arrow_forwardAn air stream containing water vapor flows over a cold container and water condenses at the bottom as shown. The mole fractions of air and water vapor are shown by the lines, with the mole fraction scale at the bottom of the figure. The figure that most correctly represents the variation of the mole fractions of air and water vapor with height is O 0 Water vapor 0 Water vapor 0 mole fraction Water Water Air Water mole fraction 1 Water mole fraction Water 1 Air mole fraction Airarrow_forward
- At a certain location during the winter, the average air temperature is 10 degrees Celsius and the net radiation is 40 W/m^2 and during the summer the net radiation is 200 W/m^2 and the temperature is 25 degrees Celsius. Compute the evaporation rates using the PRiestley-Taylor Methodarrow_forwardi need the answer quicklyarrow_forwardPlease solve im thermodynamicsarrow_forward
- Find the amount of ice (gram) at - 5.00 Celsius that is needed to cool a mixture of 0.200 kg substance A and 0.300 kg substance B from 18.0 Celsius to 12.0 Celsiusarrow_forwardUse the Kedzierski (2003) refrigerant/lubricant mixture pool boiling model to predict the boiling heat transfer coefficient (hm) for a range of superheats (4T, = 8 K to 40 K) and Ts = 277.6 K: 5.9×107(1−x,)ph ATk, (1-e*) x, To Where 1₂ %₁ = = 9m T-T Г x Τσ PL-Pbx 5.9×107(1-x₂)ph AT 0.755lp₁ (1-x₁) _ 18.75õ₁ (1—x₁) _ 18.75×10¯¹º[m]p, (1-x₂) Xp Prv XpPrv XpPrv Assume that λ = 1.34 for xb=0.005 and that λ = 0.3 for Xb = 0.02. The properties of the refrigerant (R123) at the film temperature are: KL (W/mK) 0.139 R123 Or (N/m) 179692.3 0.01764 hfg (J/kg) The properties of the mineral oil (lubricant) are: PL (kg/m³) 917.8 York-C VL (cSt) 60 Prv (kg/m³) 2.701 VL (m²/s) 6 × 10-5 OL (N/m) 0.026 1.) Plot hm vs ATs and le vs ATs for two lubricant mass fractions: x = 0.005 (use 2 = 1.34 for Xb = = 0.005) and x = 0.02 (use λ = 0.3 for xb = 0.02). Compare the predicted ro for the two mass fraction cases. Provide a plausible reason for why the boiling heat transfer coefficient for a given AT's for…arrow_forwardSaturated steam at 1 atm condenses on a 3 m high and 5 m wide vertical plate that is maintained at o 90 C by circulating cooling water through the other side. Determine: a) The rate of heat transfer by condensation to the plate, and b) The rate at which the condensate drips off the plate at the bottom.arrow_forward
- At 101.325 kPa, the latent heat of boiling latent heat of water is 2257 kJ/kg. Calculate the amount of heat that must be added to 1 kg of water at 27°C in order to boil. *arrow_forwardPlease read and solve this question carefully and circle the final answer ( Write clear) Use image below arrow_forwardExplain step-by-steparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage LearningRefrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license