PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
2nd Edition
ISBN: 9781285074788
Author: Ball
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 10.55E
Interpretation Introduction
Interpretation:
The classical velocity of an electron in a
Concept introduction:
The formula to calculate energy for particle in a box is given by the expression as follows.
Where,
•
•
•
•
•
The expression of the energy for particle in a box involves
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An electron is confined to a square well of length L. What would be the length of the box such that the zero-point energy of the electron is equal to its rest mass energy, mec2? Express your answer in terms of the parameter λC = h/mec, the ‘Compton wavelength’ of the electron.
For an electron having a one-dimensional wavefunction Y = √2π sin x in the range x = 0 to 1,
what is the probability that the electron is in the range x = 0.35 to 0.75?
Consider again the system in quizzes 1 and 2, namely a particle moving in one dimension
described by the normalized wavefunction
(x) =
30
1 (а — х) for 0 a .
а
Determine the expectation value () for the particle.
Chapter 10 Solutions
PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
Ch. 10 - State the postulates of quantum mechanics...Ch. 10 - Prob. 10.2ECh. 10 - State whether the following functions are...Ch. 10 - State whether the following functions are...Ch. 10 - Prob. 10.5ECh. 10 - Prob. 10.6ECh. 10 - Evaluate the operations in parts a, b, and f in...Ch. 10 - The following operators and functions are defined:...Ch. 10 - Prob. 10.9ECh. 10 - Indicate which of these expressions yield...
Ch. 10 - Indicate which of these expressions yield an...Ch. 10 - Why is multiplying a function by a constant...Ch. 10 - Prob. 10.13ECh. 10 - Using the original definition of the momentum...Ch. 10 - Under what conditions would the operator described...Ch. 10 - A particle on a ring has a wavefunction =12eim...Ch. 10 - Calculate the uncertainty in position, x, of a...Ch. 10 - For an atom of mercury, an electron in the 1s...Ch. 10 - Classically, a hydrogen atom behaves as if it were...Ch. 10 - The largest known atom, francium, has an atomic...Ch. 10 - How is the Bohr theory of the hydrogen atom...Ch. 10 - Though not strictly equivalent, there is a similar...Ch. 10 - The uncertainty principle is related to the order...Ch. 10 - Prob. 10.24ECh. 10 - Prob. 10.25ECh. 10 - For a particle in a state having the wavefunction...Ch. 10 - Prob. 10.27ECh. 10 - A particle on a ring has a wavefunction =eim,...Ch. 10 - Prob. 10.29ECh. 10 - Prob. 10.30ECh. 10 - Prob. 10.31ECh. 10 - Normalize the following wavefunctions over the...Ch. 10 - Prob. 10.33ECh. 10 - Prob. 10.34ECh. 10 - For an unbound or free particle having mass m in...Ch. 10 - Prob. 10.36ECh. 10 - Prob. 10.37ECh. 10 - Prob. 10.38ECh. 10 - Evaluate the expression for the total energies for...Ch. 10 - Prob. 10.40ECh. 10 - Verify that the following wavefunctions are indeed...Ch. 10 - In exercise 10.41a, the wavefunction is not...Ch. 10 - Prob. 10.43ECh. 10 - Prob. 10.44ECh. 10 - Explain why n=0 is not allowed for a...Ch. 10 - Prob. 10.46ECh. 10 - Prob. 10.47ECh. 10 - Prob. 10.48ECh. 10 - Carotenes are molecules with alternating CC and...Ch. 10 - The electronic spectrum of the molecule butadiene,...Ch. 10 - Prob. 10.51ECh. 10 - Prob. 10.52ECh. 10 - Show that the normalization constants for the...Ch. 10 - Prob. 10.54ECh. 10 - Prob. 10.55ECh. 10 - An official baseball has a mass of 145g. a...Ch. 10 - Is the uncertainty principle consistent with our...Ch. 10 - Prob. 10.58ECh. 10 - Prob. 10.59ECh. 10 - Instead of x=0 to a, assume that the limits on the...Ch. 10 - In a plot of ||2, the maximum maxima in the plot...Ch. 10 - Prob. 10.62ECh. 10 - Prob. 10.63ECh. 10 - The average value of radius in a circular system,...Ch. 10 - Prob. 10.65ECh. 10 - Prob. 10.66ECh. 10 - Prob. 10.67ECh. 10 - Prob. 10.68ECh. 10 - Prob. 10.69ECh. 10 - Assume that for a particle on a ring the operator...Ch. 10 - Mathematically, the uncertainty A in some...Ch. 10 - Prob. 10.72ECh. 10 - Prob. 10.73ECh. 10 - Verify that the wavefunctions in equation 10.20...Ch. 10 - An electron is confined to a box of dimensions...Ch. 10 - a What is the ratio of energy levels having the...Ch. 10 - Consider a one-dimensional particle-in-a-box and a...Ch. 10 - Prob. 10.78ECh. 10 - Prob. 10.79ECh. 10 - Prob. 10.80ECh. 10 - Prob. 10.81ECh. 10 - What are x,y, and z for 111 of a 3-D...Ch. 10 - Prob. 10.83ECh. 10 - Prob. 10.84ECh. 10 - Prob. 10.85ECh. 10 - Prob. 10.86ECh. 10 - Prob. 10.87ECh. 10 - Prob. 10.88ECh. 10 - Substitute (x,t)=eiEt/(x) into the time-dependent...Ch. 10 - Write (x,t)=eiEt/(x) in terms of sine and cosine,...Ch. 10 - Prob. 10.91ECh. 10 - Prob. 10.92ECh. 10 - Prob. 10.93ECh. 10 - Prob. 10.95E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The Lyman series of spectral lines for the H atom, in the ultraviolet region, arises from transitions from higher levels to n = 1. Calculate the frequency and wavelength of the least energetic line in this series.arrow_forwardDraw, label, and explain the functions of the parts of a spectroscope.arrow_forwardShow that the value of the Rydberg constant per photon, 2.179 1018 J, is equivalent to 1312 kJ/mol photons.arrow_forward
- Based on the trend shown in Figure 11.5, draw the probability distribution of a harmonic oscillator wavefunction that has a very high value of n. Explain how this is consistent with the correspondence principle.arrow_forwardA normalized wavefunction for a particle confined between 0 and L in the x direction is ψ = (2/L)1/2 sin(πx/L). Suppose that L = 10.0 nm. Calculate the probability that the particle is (a) between x = 4.95 nm and 5.05 nm, (b) between x = 1.95 nm and 2.05 nm, (c) between x = 9.90 nm and 10.00 nm, (d) between x = 5.00 nm and 10.00 nm.arrow_forwardCalculate the probability that a particle will be found in a tiny slice of space between 0.49L and 0.51L in a box of length L (defined in the interval (0,L) ) when it is in quantum state n = 1. For simplicity of integration, take the wavefunction to have a constant value equal to its midpoint value in the range given.arrow_forward
- Consider a particle in state n = 4 moving in a 1D box of length I = 1.0 angstrom (Å). What is the probability of finding the particle in the two middle quarters of the box? Show detailed computation.arrow_forwardConsider a 1D particle in a box confined between a = 0 and x = 3. The Hamiltonian for the particle inside the box is simply given by Ĥ . Consider the following normalized wavefunction 2m dz² ¥(2) = 35 (x³ – 9x). Find the expectation value for the energy of the particle inside the box. Give your 5832 final answer for the expectation value in units of (NOTE: h, not hbar!). In your work, compare the expectation value to the lowest energy state of the 1D particle in a box and comment on how the expectation value you calculated for the wavefunction ¥(x) is an example of the variational principle.arrow_forward2. Calculate the amount of energy required to go from the ground state to the first excited state of an electron moving in a circular orbit with a radius of 100 pm. 3. The wavefunction of a particle on a ring can also be written in terms of sines and cosines as Y (4) = eimiø = cos(m¡4) + i sin(m¡4). How many nodes exist in the real part of the wavefunction for m=2 and m=4? At what values of p are they located?arrow_forward
- Imagine a particle free to move in the x direction. Which of the following wavefunctions would be acceptable for such a particle? In eachcase, give your reasons for accepting or rejecting each function. (i) Ψ(x)=x2; (ii) Ψ(x)=1/x; (iii) Ψ(x)=e-x^2.arrow_forwardConsider a single particle with rest mass m residing in a one-dimensional space, x. This particle experiences a potential energy V(x) = ∞ for x a, and a potential energy V(x) = 0 for 0 < x < a. The solutions to the Schrödinger Equation for this system are 12. 2 Vn(x) : sin a where n is the state's quantum number. Show that the ground state wave function is normalized.arrow_forwardWhat is the numerical probability of finding an electron in a box of length L between 0 and L/4 when its wavefunction is in the n=4 state? If a non-calculation 3. approach is used, explain your justification.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning