PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
2nd Edition
ISBN: 9781285074788
Author: Ball
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 10.37E
Interpretation Introduction
Interpretation:
An explanation corresponding to the statement that the kinetic energy operator part of the Schrödinger equation is a derivative whereas the potential energy operator part of the Schrödinger equation is simply “multiplication times a function
Concept introduction:
In
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Write a 1-Dim Schrodinger Equation that includes the total energy Hamiltonian operator and the electronic energy expression.
The physical interpretation of the wavefunction and the fact that it is a solution of the Schroedinger equation, which is a 2nd order differential equation, causes many restrictions on an acceptable wave function solution: (i) it must be single-valued; (ii) it must be continuous; (iii) its slope must be continuous; and (iv) it must be normalizable or normalized. Sketch the following functions and check whether they can be wave functions. Explain your answers. (Hint, it might be useful to plot the functions).
Quantum mechanical formalism
Operators
Properties of the operators:
Operator commutation:
Theorem: Two operators that have the same eigenfunctions, commute. Reciprocal: If two operators commute, they have the same eigenfunctions.
Prove the theorem and its reciprocal.
Chapter 10 Solutions
PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
Ch. 10 - State the postulates of quantum mechanics...Ch. 10 - Prob. 10.2ECh. 10 - State whether the following functions are...Ch. 10 - State whether the following functions are...Ch. 10 - Prob. 10.5ECh. 10 - Prob. 10.6ECh. 10 - Evaluate the operations in parts a, b, and f in...Ch. 10 - The following operators and functions are defined:...Ch. 10 - Prob. 10.9ECh. 10 - Indicate which of these expressions yield...
Ch. 10 - Indicate which of these expressions yield an...Ch. 10 - Why is multiplying a function by a constant...Ch. 10 - Prob. 10.13ECh. 10 - Using the original definition of the momentum...Ch. 10 - Under what conditions would the operator described...Ch. 10 - A particle on a ring has a wavefunction =12eim...Ch. 10 - Calculate the uncertainty in position, x, of a...Ch. 10 - For an atom of mercury, an electron in the 1s...Ch. 10 - Classically, a hydrogen atom behaves as if it were...Ch. 10 - The largest known atom, francium, has an atomic...Ch. 10 - How is the Bohr theory of the hydrogen atom...Ch. 10 - Though not strictly equivalent, there is a similar...Ch. 10 - The uncertainty principle is related to the order...Ch. 10 - Prob. 10.24ECh. 10 - Prob. 10.25ECh. 10 - For a particle in a state having the wavefunction...Ch. 10 - Prob. 10.27ECh. 10 - A particle on a ring has a wavefunction =eim,...Ch. 10 - Prob. 10.29ECh. 10 - Prob. 10.30ECh. 10 - Prob. 10.31ECh. 10 - Normalize the following wavefunctions over the...Ch. 10 - Prob. 10.33ECh. 10 - Prob. 10.34ECh. 10 - For an unbound or free particle having mass m in...Ch. 10 - Prob. 10.36ECh. 10 - Prob. 10.37ECh. 10 - Prob. 10.38ECh. 10 - Evaluate the expression for the total energies for...Ch. 10 - Prob. 10.40ECh. 10 - Verify that the following wavefunctions are indeed...Ch. 10 - In exercise 10.41a, the wavefunction is not...Ch. 10 - Prob. 10.43ECh. 10 - Prob. 10.44ECh. 10 - Explain why n=0 is not allowed for a...Ch. 10 - Prob. 10.46ECh. 10 - Prob. 10.47ECh. 10 - Prob. 10.48ECh. 10 - Carotenes are molecules with alternating CC and...Ch. 10 - The electronic spectrum of the molecule butadiene,...Ch. 10 - Prob. 10.51ECh. 10 - Prob. 10.52ECh. 10 - Show that the normalization constants for the...Ch. 10 - Prob. 10.54ECh. 10 - Prob. 10.55ECh. 10 - An official baseball has a mass of 145g. a...Ch. 10 - Is the uncertainty principle consistent with our...Ch. 10 - Prob. 10.58ECh. 10 - Prob. 10.59ECh. 10 - Instead of x=0 to a, assume that the limits on the...Ch. 10 - In a plot of ||2, the maximum maxima in the plot...Ch. 10 - Prob. 10.62ECh. 10 - Prob. 10.63ECh. 10 - The average value of radius in a circular system,...Ch. 10 - Prob. 10.65ECh. 10 - Prob. 10.66ECh. 10 - Prob. 10.67ECh. 10 - Prob. 10.68ECh. 10 - Prob. 10.69ECh. 10 - Assume that for a particle on a ring the operator...Ch. 10 - Mathematically, the uncertainty A in some...Ch. 10 - Prob. 10.72ECh. 10 - Prob. 10.73ECh. 10 - Verify that the wavefunctions in equation 10.20...Ch. 10 - An electron is confined to a box of dimensions...Ch. 10 - a What is the ratio of energy levels having the...Ch. 10 - Consider a one-dimensional particle-in-a-box and a...Ch. 10 - Prob. 10.78ECh. 10 - Prob. 10.79ECh. 10 - Prob. 10.80ECh. 10 - Prob. 10.81ECh. 10 - What are x,y, and z for 111 of a 3-D...Ch. 10 - Prob. 10.83ECh. 10 - Prob. 10.84ECh. 10 - Prob. 10.85ECh. 10 - Prob. 10.86ECh. 10 - Prob. 10.87ECh. 10 - Prob. 10.88ECh. 10 - Substitute (x,t)=eiEt/(x) into the time-dependent...Ch. 10 - Write (x,t)=eiEt/(x) in terms of sine and cosine,...Ch. 10 - Prob. 10.91ECh. 10 - Prob. 10.92ECh. 10 - Prob. 10.93ECh. 10 - Prob. 10.95E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Is the uncertainty principle consistent with our description of the wavefunctions of the 1D particle-in-a-box? Hint: Remember that position is not an eigenvalue operator for the particle-in-a-box wavefunctions.arrow_forwardA particle on a ring has a wavefunction =12eim where equals 0 to 2 and m is a constant. Evaluate the angular momentum p of the particle if p=i How does the angular momentum depend on the constant m?arrow_forwardThe normalized wave function for a particle in a one-dimensional box in which the potential energy is zero is (x)=2/Lsin(nx/L) , where L is the length of the box (with the left wall at x=0 ). What is the probability that the particle will lie between x=0 and x=L/4 if the particle is in its n=2 state?arrow_forward
- A particle on a ring has a wavefunction =eim, where =0to2 and m is a constant. a Normalize the wavefunction, where d is d. How does the normalization constant depend on the constant m? b What is the probability that the particle is in the ring indicated by the angular range =0to2/3? Does this answer make sense? How does the probability depend on constant m?arrow_forwardThe following operators and functions are defined: A=x()B=sin()C=1()D=10()p=4x32x2q=0.5r=45xy2s=2x3 Evaluate: a Ap b Cq c Bs d Dq e A(Cr) f A(Dq)arrow_forwardUsing the original definition of the momentum operator and the classical form of kinetic energy, derive the one-dimensional kinetic energy operator K=22m2x2arrow_forward
- Under what conditions would the operator described as multiplication by i the square root of 1 be considered a Hermitian operator?arrow_forwardThe de Broglie equation for a particle can be applied to an electron orbiting a nucleus if one assumes that the electron must have an exact integral number of wavelengths as it covers the circumference of the orbit having radius r:n=2r. From this, derive Bohrs quantized angular momentum postulate.arrow_forwardWhy is multiplying a function by a constant considered an eigenvalue equation?arrow_forward
- What is the degeneracy of an h subshell? An n subshell?arrow_forwardFor an unbound or free particle having mass m in the complete absence of any potential energy that is, V=0, the acceptable one-dimensional wavefunctions are =Aei(2mE)1/2x/h+Bei(2mE)1/2x/h, where A and B are constants and E is the energy of the particle. Is this wavefunction normalizable over the interval x+? Explain the significance of your answer.arrow_forwardAn official baseball has a mass of 145g. a Assuming that a baseball in New Orleans Superdome width =310m is acting as a particle-in-a-box, what is its energy in the n=1 state? b Assuming that the energy in part a is all kinetic energy (=12mv2), what is the velocity of the baseball in the n=1 state? c A hit baseball can travel as fast as 44.7m/s. Calculate the classical kinetic energy of the hit baseball and, assuming that this energy is quantized, determine the quantum number of the hit baseball.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning