PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
2nd Edition
ISBN: 9781285074788
Author: Ball
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 10.34E
Interpretation Introduction
Interpretation:
The condition that must be satisfied so that the wavefunction is normalizable is to be stated.
Concept introduction:
In
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
Ch. 10 - State the postulates of quantum mechanics...Ch. 10 - Prob. 10.2ECh. 10 - State whether the following functions are...Ch. 10 - State whether the following functions are...Ch. 10 - Prob. 10.5ECh. 10 - Prob. 10.6ECh. 10 - Evaluate the operations in parts a, b, and f in...Ch. 10 - The following operators and functions are defined:...Ch. 10 - Prob. 10.9ECh. 10 - Indicate which of these expressions yield...
Ch. 10 - Indicate which of these expressions yield an...Ch. 10 - Why is multiplying a function by a constant...Ch. 10 - Prob. 10.13ECh. 10 - Using the original definition of the momentum...Ch. 10 - Under what conditions would the operator described...Ch. 10 - A particle on a ring has a wavefunction =12eim...Ch. 10 - Calculate the uncertainty in position, x, of a...Ch. 10 - For an atom of mercury, an electron in the 1s...Ch. 10 - Classically, a hydrogen atom behaves as if it were...Ch. 10 - The largest known atom, francium, has an atomic...Ch. 10 - How is the Bohr theory of the hydrogen atom...Ch. 10 - Though not strictly equivalent, there is a similar...Ch. 10 - The uncertainty principle is related to the order...Ch. 10 - Prob. 10.24ECh. 10 - Prob. 10.25ECh. 10 - For a particle in a state having the wavefunction...Ch. 10 - Prob. 10.27ECh. 10 - A particle on a ring has a wavefunction =eim,...Ch. 10 - Prob. 10.29ECh. 10 - Prob. 10.30ECh. 10 - Prob. 10.31ECh. 10 - Normalize the following wavefunctions over the...Ch. 10 - Prob. 10.33ECh. 10 - Prob. 10.34ECh. 10 - For an unbound or free particle having mass m in...Ch. 10 - Prob. 10.36ECh. 10 - Prob. 10.37ECh. 10 - Prob. 10.38ECh. 10 - Evaluate the expression for the total energies for...Ch. 10 - Prob. 10.40ECh. 10 - Verify that the following wavefunctions are indeed...Ch. 10 - In exercise 10.41a, the wavefunction is not...Ch. 10 - Prob. 10.43ECh. 10 - Prob. 10.44ECh. 10 - Explain why n=0 is not allowed for a...Ch. 10 - Prob. 10.46ECh. 10 - Prob. 10.47ECh. 10 - Prob. 10.48ECh. 10 - Carotenes are molecules with alternating CC and...Ch. 10 - The electronic spectrum of the molecule butadiene,...Ch. 10 - Prob. 10.51ECh. 10 - Prob. 10.52ECh. 10 - Show that the normalization constants for the...Ch. 10 - Prob. 10.54ECh. 10 - Prob. 10.55ECh. 10 - An official baseball has a mass of 145g. a...Ch. 10 - Is the uncertainty principle consistent with our...Ch. 10 - Prob. 10.58ECh. 10 - Prob. 10.59ECh. 10 - Instead of x=0 to a, assume that the limits on the...Ch. 10 - In a plot of ||2, the maximum maxima in the plot...Ch. 10 - Prob. 10.62ECh. 10 - Prob. 10.63ECh. 10 - The average value of radius in a circular system,...Ch. 10 - Prob. 10.65ECh. 10 - Prob. 10.66ECh. 10 - Prob. 10.67ECh. 10 - Prob. 10.68ECh. 10 - Prob. 10.69ECh. 10 - Assume that for a particle on a ring the operator...Ch. 10 - Mathematically, the uncertainty A in some...Ch. 10 - Prob. 10.72ECh. 10 - Prob. 10.73ECh. 10 - Verify that the wavefunctions in equation 10.20...Ch. 10 - An electron is confined to a box of dimensions...Ch. 10 - a What is the ratio of energy levels having the...Ch. 10 - Consider a one-dimensional particle-in-a-box and a...Ch. 10 - Prob. 10.78ECh. 10 - Prob. 10.79ECh. 10 - Prob. 10.80ECh. 10 - Prob. 10.81ECh. 10 - What are x,y, and z for 111 of a 3-D...Ch. 10 - Prob. 10.83ECh. 10 - Prob. 10.84ECh. 10 - Prob. 10.85ECh. 10 - Prob. 10.86ECh. 10 - Prob. 10.87ECh. 10 - Prob. 10.88ECh. 10 - Substitute (x,t)=eiEt/(x) into the time-dependent...Ch. 10 - Write (x,t)=eiEt/(x) in terms of sine and cosine,...Ch. 10 - Prob. 10.91ECh. 10 - Prob. 10.92ECh. 10 - Prob. 10.93ECh. 10 - Prob. 10.95E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Show that the normalization constants for the general form of the wavefunction =sin(nx/a) are the same and do not depend on the quantum number n.arrow_forwardFor a particle in a state having the wavefunction =2asinxa in the range x=0toa, what is the probability that the particle exists in the following intervals? a x=0to0.02ab x=0.24ato0.26a c x=0.49ato0.51ad x=0.74ato0.76a e x=0.98ato1.00a Plot the probabilities versus x. What does your plot illustrate about the probability?arrow_forwardIs the uncertainty principle consistent with our description of the wavefunctions of the 1D particle-in-a-box? Hint: Remember that position is not an eigenvalue operator for the particle-in-a-box wavefunctions.arrow_forward
- A particle on a ring has a wavefunction =12eim where equals 0 to 2 and m is a constant. Evaluate the angular momentum p of the particle if p=i How does the angular momentum depend on the constant m?arrow_forwardState whether the following functions are acceptable wavefunctions over the range given. If they are not, explain why not. aF(x)=x2+1,0x10 bF(x)=x+1,x+ cf(x)=tan(x),x d=ex2,x+arrow_forwardFor an unbound or free particle having mass m in the complete absence of any potential energy that is, V=0, the acceptable one-dimensional wavefunctions are =Aei(2mE)1/2x/h+Bei(2mE)1/2x/h, where A and B are constants and E is the energy of the particle. Is this wavefunction normalizable over the interval x+? Explain the significance of your answer.arrow_forward
- A particle on a ring has a wavefunction =eim, where =0to2 and m is a constant. a Normalize the wavefunction, where d is d. How does the normalization constant depend on the constant m? b What is the probability that the particle is in the ring indicated by the angular range =0to2/3? Does this answer make sense? How does the probability depend on constant m?arrow_forwardUnder what conditions would the operator described as multiplication by i the square root of 1 be considered a Hermitian operator?arrow_forwardThe following operators and functions are defined: A=x()B=sin()C=1()D=10()p=4x32x2q=0.5r=45xy2s=2x3 Evaluate: a Ap b Cq c Bs d Dq e A(Cr) f A(Dq)arrow_forward
- Why does the wavefunction 4,4,0 not exist? Similarly, why does a 3f subshell not exist? See exercise 11.73 for notation definition.arrow_forwardState whether the following functions are acceptable wavefunctions over the range given. If they are not, explain why not. a=ex2,x+ bF(x)=sin4x,x cx=y2,x0 dThe function that looks like this: eThe function that looks like this:arrow_forwardInstead of x=0 to a, assume that the limits on the 1-D box were x=+(a/2) to (a/2). Derive acceptable wavefunction for this particle-in-a-box. You may have to consult an integral table to determine the normalization constant. What are the quantized energies for the particle?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning