Concept explainers
(a)
Interpretation:
The given integrals of the wavefunctions of particles-in-boxes are to be evaluated by using equation 10.28.
Concept introduction:
For the orthogonality of the two different wave functions, the product of the wave functions is integrated over the entire limits. It is expressed by the equation as given below.
Where,
Answer to Problem 10.88E
The value of given integral of wavefunction is
Explanation of Solution
The combined expression for orthogonality and normality of wave functions is given by the equation 10.28 as shown below.
Where,
•
The given integrals of the wavefunctions is
Therefore, the value of given integral of wavefunction is
The value of given integral of wavefunction is
(b)
Interpretation:
The given integrals of the wavefunctions of particles-in-boxes are to be evaluated by using equation 10.28.
Concept introduction:
For the orthogonality of the two different wave functions, the product of the wave functions is integrated over the entire limits. It is expressed by the equation as given below.
Where,
Answer to Problem 10.88E
The value of given integral of wavefunction is
Explanation of Solution
The combined expression for orthogonality and normality of wave functions is given by the equation 10.28 as shown below.
Where,
•
The given integrals of the wavefunctions is
Therefore, the value of given integral of wavefunction is
The value of given integral of wavefunction is
(c)
Interpretation:
The given integrals of the wavefunctions of particles-in-boxes are to be evaluated by using equation 10.28.
Concept introduction:
The Schrödinger equation is used to find the allowed energy levels for electronic transitions in the
Where,
•
•
•
Answer to Problem 10.88E
The value of given integral of wavefunction is
Explanation of Solution
The combined expression for orthogonality and normality of wave functions is given by the equation 10.28 as shown below.
Where,
•
The given integrals of the wavefunctions is
Thus, the given wave function can be expressed as follows:
Hence, the given wave function is expressed as
The value of given wave function is calculated as follows:
Substitute the value of
Therefore, the value of given integral of wavefunction is
The value of given integral of wavefunction is
(d)
Interpretation:
The given integrals of the wavefunctions of particles-in-boxes are to be evaluated by using equation 10.28.
Concept introduction:
The Schrödinger equation is used to find the allowed energy levels for electronic transitions in the quantum mechanics. It is generally expressed as follows.
Where,
•
•
•
Answer to Problem 10.88E
The value of given integral of wavefunction is
Explanation of Solution
The combined expression for orthogonality and normality of wave functions is given by the equation 10.28 as shown below.
Where,
•
The given integrals of the wavefunctions is
Thus, the given wave function can be expressed as follows:
Hence, the given wave function is expressed as
The value of given wave function is calculated as follows:
Therefore, the value of given integral of wavefunction is
The value of given integral of wavefunction is
(e)
Interpretation:
The given integrals of the wavefunctions of particles-in-boxes are to be evaluated by using equation 10.28.
Concept introduction:
For the orthogonality of the two different wave functions, the product of the wave functions is integrated over the entire limits. It is expressed by the equation as given below.
Where,
Answer to Problem 10.88E
The value of given integral of wavefunction is
Explanation of Solution
The combined expression for orthogonality and normality of wave functions is given by the equation 10.28 as shown below.
Where,
•
The given integrals of the wavefunctions is
Therefore, the value of given integral of wavefunction is
The value of given integral of wavefunction is
(f)
Interpretation:
The given integrals of the wavefunctions of particles-in-boxes are to be evaluated by using equation 10.28.
Concept introduction:
For the orthogonality of the two different wave functions, the product of the wave functions is integrated over the entire limits. It is expressed by the equation as given below.
Where,
Answer to Problem 10.88E
The value of given integral of wavefunction is
Explanation of Solution
The combined expression for orthogonality and normality of wave functions is given by the equation 10.28 as shown below.
Where,
•
The given integrals of the wavefunctions is
Therefore, the value of given integral of wavefunction is
The value of given integral of wavefunction is
(g)
Interpretation:
The given integrals of the wavefunctions of particles-in-boxes are to be evaluated by using equation 10.28.
Concept introduction:
The Schrödinger equation is used to find the allowed energy levels for electronic transitions in the quantum mechanics. It is generally expressed as follows.
Where,
•
•
•
Answer to Problem 10.88E
The value of given integral of wavefunction is
Explanation of Solution
The combined expression for orthogonality and normality of wave functions is given by the equation 10.28 as shown below.
Where,
•
The given integral of the wavefunctions is
Thus, the given wave function can be expressed as follows:
Hence, the given wave function is expressed as
The value of given wave function is calculated as follows:
Substitute the value of
Therefore, the value of given integral of wavefunction is
The value of given integral of wavefunction is
(h)
Interpretation:
The given integrals of the wavefunctions of particles-in-boxes are to be evaluated by using equation 10.28.
Concept introduction:
The Schrödinger equation is used to find the allowed energy levels for electronic transitions in the quantum mechanics. It is generally expressed as follows.
Where,
•
•
•
Answer to Problem 10.88E
The value of given integral of wavefunction is
Explanation of Solution
The combined expression for orthogonality and normality of wave functions is given by the equation 10.28 as shown below.
Where,
•
The given integrals of the wavefunctions is
Thus, the given wave function can be expressed as follows:
Hence, the given wave function is expressed as
The value of given wave function is calculated as follows:
Therefore, the value of given integral of wavefunction is
The value of given integral of wavefunction is
Want to see more full solutions like this?
Chapter 10 Solutions
PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
- Hi!! Please provide a solution that is handwritten. Ensure all figures, reaction mechanisms (with arrows and lone pairs please!!), and structures are clearly drawn to illustrate the synthesis of the product as per the standards of a third year organic chemistry course. ****the solution must include all steps, mechanisms, and intermediate structures as required. Please hand-draw the mechanisms and structures to support your explanation. Don’t give me AI-generated diagrams or text-based explanations, no wordy explanations on how to draw the structures I need help with the exact mechanism hand drawn by you!!! I am reposting this—ensure all parts of the question are straightforward and clear or please let another expert handle it thanks!!arrow_forwardIn three dimensions, explain the concept of the velocity distribution function of particles within the kinetic theory of gases.arrow_forwardIn the kinetic theory of gases, explain the concept of the velocity distribution function of particles in space.arrow_forward
- In the kinetic theory of gases, explain the concept of the velocity distribution function of particles.arrow_forwardHi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION with its parts spread out till part (g), please answer EACH part till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all calculations step by step EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forwardHi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION, please answer EACH part PART A AND PART B!!!!! till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all details EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forward
- Hi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION, please answer EACH part till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all details EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forward8b. Explain, using key intermediates, why the above two products are formed instead of the 1,2-and 1,4- products shown in the reaction below. CIarrow_forward(5pts) Provide the complete arrow pushing mechanism for the chemical transformation depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O H I I CH3O-H H I ① Harrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning