Engineering Electromagnetics
9th Edition
ISBN: 9780078028151
Author: Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 10.30P
A two-wire line constructed of lossless wire of circular cross section is gradually flared into a coupling loop that looks like an eggbeater. At the point X, indicated by the arrow in Figure 10.34, a short circuit is placed across the line. A probe is moved along the line and indicates that the first voltage minimum to the left of X is 16 cm from X. With the short circuit removed, a voltage minimum is found 5 cm to the left of X, and a voltage maximum is located that is 3 times the voltage of the minimum. Use the Smith chart to determine (a) f; (b) s; (c) the normalized input impedance of the eggbeater as seen looking to the right at point X.
Figure 10.34 See Problem 10.30.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Don't copy
The value of critical clearing angle can be directly determined by using step by step method.Select one:True
fals
The carrier frequency is 500 Hz, and the modulating signal is a single-
tone sinusoidal signal. The x-axis is in time while the y-axis is the
amplitude of the AM signal. Determine the power of the unmodulated
carrier in W. Assume the load resistance to be 1-ohm.
4
3
1
-1
2
-3
-4
-5
0.005
0.01
0.015
0.02
0.025
0.03
0.035
0.04
0.045
0.05
Time (s)
Chapter 10 Solutions
Engineering Electromagnetics
Ch. 10 - The parameters of a certain transmission line...Ch. 10 - A sinusoidal wave on a transmission line is...Ch. 10 - Prob. 10.3PCh. 10 - A sinusoidal voltage V0, frequency , and phase...Ch. 10 - Two voltage waves of equal amplitude V0 and radian...Ch. 10 - A 50 load is attached to a 50-m section of the...Ch. 10 - Prob. 10.7PCh. 10 - An absolute measure of power is the dBm scale, in...Ch. 10 - A 100-m transmission line is used to propagate a...Ch. 10 - Two lossless transmission lines having different...
Ch. 10 - Two voltage waves of equal amplitude V0, which...Ch. 10 - In a circuit in which a sinusoidal voltage source...Ch. 10 - The skin effect mechanism in transmission lines is...Ch. 10 - A lossless transmission line having characteristic...Ch. 10 - Figure 10.29 See Problem 10.15. For the...Ch. 10 - A 100 lossless transmission line is connected to a...Ch. 10 - Determine the average power absorbed by each...Ch. 10 - The line shown in Figure 10.31 is lossless. Find s...Ch. 10 - A lossless transmission line is 50 cm in length...Ch. 10 - (a) Determine s on the transmission line of Figure...Ch. 10 - Prob. 10.21PCh. 10 - Prob. 10.22PCh. 10 - The normalized load on a lossless transmission...Ch. 10 - Prob. 10.24PCh. 10 - Prob. 10.25PCh. 10 - A 75 lossless line is of length 1.2 . It is...Ch. 10 - Prob. 10.27PCh. 10 - The wavelength on a certain lossless line is 10...Ch. 10 - Prob. 10.29PCh. 10 - A two-wire line constructed of lossless wire of...Ch. 10 - In order to compare the relative sharpness of the...Ch. 10 - In Figure 10.17, let ZL=250 and Z0=50. Find the...Ch. 10 - In Figure 10.17, let ZL=100+j150 and Z0=100. Find...Ch. 10 - The lossless line shown in Figure 10.35 is...Ch. 10 - Prob. 10.35PCh. 10 - The two-wire lines shown in Figure 10.36 are all...Ch. 10 - Prob. 10.37PCh. 10 - Repeat Problem 10.37, with, Z0=50 and RL=Rg=25....Ch. 10 - In the transmission line of Figure 10.20, Z0=50,...Ch. 10 - In the charged line of Figure 10.25, the...Ch. 10 - In the transmission line of Figure 10.37, the...Ch. 10 - Figure 10.38 See Problem 10.42. A simple frozen...Ch. 10 - Figure 10.39 See Problem 10.43. In Figure 10.39,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- In the Transmission Line Simulator, the Transmission Line is composed of which parameter/s? O A. The Shunt Conductance Only O B. The Series Impedance and Shunt Capacitance O C. The Shunt Capacitance Only O D. The Series Impedance Onlyarrow_forwardIn a series eaperiment with R, =1n and R, 4n across a power Supply E, the slope g (E, v, ) and of CE,V2) are re spechively (...) C ---- ) (a) 2 , 3 ( b) 5 , 1.25 (e) 2.15 , 5 (d) 3, 2arrow_forwardA wave signal travelling along an electrical transmission line (usually called incident wave) will be reflected back in the opposite direction when the travelling signal encounters a discontinuity in the characteristic impe- dance. This can happen in real life if we join dissimilar transmission lines together. Signals travelling alone the line will be partially reflected at the junction (see illustration below; note that up to this point we have not asked you any question yet). Impedance Discontinuity Forward Current Propagating Voltage Wave Z01 Zo2 Return Current Z01 Zo2 Incident Wave Transmitted Wave Reflected Wave Transmission Line Reflection Suppose a transmission line with characteristic impedance Zo is terminated at one end with an impedance of ZL (recall that impedance is a complex number Z = X +iY where X is the resistance and Y is the reactance), then the reflection coefficient I' is given by the voltage reflection equation ZL – Zo ZL + Zo where I, ZL = XL + iYL, and Zo Xo +…arrow_forward
- In an AC LVDT system, measuring the output voltage alone gives anindication of the displacement from the center, but not the direction ofdisplacement. Explain why, and also explain a method for solving thisproblem.arrow_forwardWhat is SMD in the electrical field?arrow_forwardi need the answer quicklyarrow_forward
- The VSWR on an 50-Ohm transmission line is 5. The distance between successive voltageminima is 80 cm while the distance from the load to the first minimum is 30 cm. What are thereflection coefficient and load impedancearrow_forwardA 25-mV sinusoid at a frequency of 400 Hz is applied to an FM generator. If the deviation constant for the FM generator is 750 Hz/10 mV, determine 1. The frequency swing generated by the FM generator, in kHz = 2. The rate at which the carrier frequency is being deviated, in Hzarrow_forwardSuppose a manufacturing error occurred and the oven was made 6.0 cm longer than specified in part (a). In this case, what would have to be the frequency of the microwaves for there still to be five antinodal planes of the electric field along the width of the oven?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
How do Electric Transmission Lines Work?; Author: Practical Engineering;https://www.youtube.com/watch?v=qjY31x0m3d8;License: Standard Youtube License