Engineering Electromagnetics
9th Edition
ISBN: 9780078028151
Author: Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Question
Chapter 10, Problem 10.25P
To determine
(a)
The value of
To determine
(b)
The value of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A single-phase transmission line consisting
of two conductors, the radius of each
conductor is 0.4 cm, the distance between
the conductors is three and half meters and
the height above ground is eight
1-The capacitance in uF/km without effect
of ground is 2-The capacitance in pF/km
with effect of ground is
8. A transmission line has a characteristic impedance of 500 and a resistance
of 0.1 02/m. If the line is distortion less, the attenuation constant (in Np/m) is
(a) 500
(b) 5
(c) 0.014
(d) 0.002
We say a transmission line is matched when:
a) ZĻ=Zo
b) ZĻ=vZo
c) ZL=Zo/2
d) ZĻ=2Zo
Chapter 10 Solutions
Engineering Electromagnetics
Ch. 10 - The parameters of a certain transmission line...Ch. 10 - A sinusoidal wave on a transmission line is...Ch. 10 - Prob. 10.3PCh. 10 - A sinusoidal voltage V0, frequency , and phase...Ch. 10 - Two voltage waves of equal amplitude V0 and radian...Ch. 10 - A 50 load is attached to a 50-m section of the...Ch. 10 - Prob. 10.7PCh. 10 - An absolute measure of power is the dBm scale, in...Ch. 10 - A 100-m transmission line is used to propagate a...Ch. 10 - Two lossless transmission lines having different...
Ch. 10 - Two voltage waves of equal amplitude V0, which...Ch. 10 - In a circuit in which a sinusoidal voltage source...Ch. 10 - The skin effect mechanism in transmission lines is...Ch. 10 - A lossless transmission line having characteristic...Ch. 10 - Figure 10.29 See Problem 10.15. For the...Ch. 10 - A 100 lossless transmission line is connected to a...Ch. 10 - Determine the average power absorbed by each...Ch. 10 - The line shown in Figure 10.31 is lossless. Find s...Ch. 10 - A lossless transmission line is 50 cm in length...Ch. 10 - (a) Determine s on the transmission line of Figure...Ch. 10 - Prob. 10.21PCh. 10 - Prob. 10.22PCh. 10 - The normalized load on a lossless transmission...Ch. 10 - Prob. 10.24PCh. 10 - Prob. 10.25PCh. 10 - A 75 lossless line is of length 1.2 . It is...Ch. 10 - Prob. 10.27PCh. 10 - The wavelength on a certain lossless line is 10...Ch. 10 - Prob. 10.29PCh. 10 - A two-wire line constructed of lossless wire of...Ch. 10 - In order to compare the relative sharpness of the...Ch. 10 - In Figure 10.17, let ZL=250 and Z0=50. Find the...Ch. 10 - In Figure 10.17, let ZL=100+j150 and Z0=100. Find...Ch. 10 - The lossless line shown in Figure 10.35 is...Ch. 10 - Prob. 10.35PCh. 10 - The two-wire lines shown in Figure 10.36 are all...Ch. 10 - Prob. 10.37PCh. 10 - Repeat Problem 10.37, with, Z0=50 and RL=Rg=25....Ch. 10 - In the transmission line of Figure 10.20, Z0=50,...Ch. 10 - In the charged line of Figure 10.25, the...Ch. 10 - In the transmission line of Figure 10.37, the...Ch. 10 - Figure 10.38 See Problem 10.42. A simple frozen...Ch. 10 - Figure 10.39 See Problem 10.43. In Figure 10.39,...
Knowledge Booster
Similar questions
- c) For a transmission line w/characteristic impedance Z0 = 50 W. At some point of the line, a forward wave has the voltage V+ = 10V and backward wave has the voltage V- = 4V. i) Currents of the forward wave and backward wave at that point. ii) Measured voltage and current at that point. d) A transmission line has the following properties: Length, L = 3 m. Characteristic impedance Z0 = 50 W. The load impedance ZL = 100 W. And phase constant b = p/3. Assume the forward voltage at z = 0 is VA =10ejp/4 At z = 3m, calculate: i) Forward voltage and forward current. ii) Backward voltage and backward current. iii) Measured (total) voltage and current across the loadarrow_forwardA single-phase transmission line consisting of two conductors, the radius of each conductor is 0.4 cm, the distance between the conductors is three and half meters and the height above ground is eight meter. Determine 1)The capacitance in uF/km without effect of ground 2)The capacitance in uF/km with effect of groundarrow_forward1. a. A purely reactive load impedance Z₁ =jX terminates a transmission line. Prove that the reflection coefficient magnitude |K| is always unity, assuming the characteristic impedance Zo is real. What is the VSWR of the line in this case? b. Consider the transmission line in the figure. i. Determine the SWR on transmission line ii. The input impedance If=102, find I, in the figure. WC 100/0*V] 20 922 Air, lossless Z-50 £2 2.72 40 2 ele 3002arrow_forward
- Transmission Lines (i). (ii). What is transmission line and why we can study it using periodic configuration of LC circuits? What is characteristic impedance and why it is important? Do you know any practical example of its use? (ii). Explain the difference between open and short circuit at the end?arrow_forwardWill the return pulse be in phase or out of phase with the ingoing pulse? Briefly explain why.arrow_forwardShow that VSWR for a transmission line will have values between 1 and infinity.arrow_forward
- q7arrow_forwardTransmission line with a load Zl = 100 + i80 ohm with characteristic impedance of Z0 = 5 ohm is designed. The transmission line operates at 100 MHz, where is matched with a shunt single- stub tuner. a)Calculate the stub positions. b)Calculate the stub length where open circuit stub is used. c) Calculate the stub length where short circuit stub is used.arrow_forwardFind the characteristic impedance and signal velocity for a transmission line consisting of two parallel strips with a width ω and a separation d. You can ignore fringing fields by assuming that they are sections of concuctors infinitely wide.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,