Engineering Electromagnetics
9th Edition
ISBN: 9780078028151
Author: Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Question
Chapter 10, Problem 10.7P
To determine
The received power if the transmitted power is 100mW.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Make a circuit in tinkerkat from the following: Truth table analysisA) Unsimplified function:From the truth table A, we can derive the unsimplified equationBoolean expression:F = (A'B'C'F') + (A'B'CF) + (A'BC'F') + (A'BCF) + (AB'C'F') + (AB'CF) + (ABC'F) + (ABCF)B) Non-simplified function:From truth table B, we can derive the unsimplified equationBoolean expression:F = (A'B'C'F') + (A'BC'F) + (A'BCF') + (AB'CF') + (ABC'F')Karnaugh MapsTO)\|00|01|11|10|--|------|------|------|------|00|1 |0|0|1|01|0|1|1|0|11|0|1|0|1|0|10|1|0|1|0|B)\|00|01|11|10|--|------|------|------|------|00|1|0|0|0|01|0|1|1|0|11|0|1|0|0|10|0|0|0|0|Simplified functions (using Karnaugh maps)TO)•Adjacent 1s are grouped together on the Karnaugh map.• The simplified function is: F = A’F + BF + CFB)• Adjacent 1s are grouped together on the Karnaugh map.• The simplified function is: F = A'C'F + BCF
Schematic design (simplified functions)TO)•NO door for A•AND gate for A' and F•AND gates for B and F, and C and F•OR gate for…
Q2.
22
A four-pole, 415 V 50Hz induction motor supplies its rated power to a
constant load. The rated speed of the motor is 1470 rpm.
i) Draw the equivalent electrical circuit of the motor
ii) Calculate the slip frequency and slip
iii) If the supply voltage is changed to 207.5 V_25 Hz, calculate the motor
speed, slip frequency, and slip.
iv) Sketch torque-speed characteristics of the motor when the supply
voltages are 415 V 50 Hz, 207.5 V_25 Hz and 415 V_60 Hz
respectively; Compare the peak torques of the 415 V_50 Hz case and
the 415 V_60 Hz case.
b) A synchronous generator connects to an infinite bus. The terminal voltage
VT and output current IA of the generator are shown in the phasor diagram
in Figure Q2. This generator is required to double its real power output by
increasing the governor's set point while maintaining the field current. With
the aid of the phasor diagram, analyse the effect of the change of
governor's set points on the internal generated voltage EA, the output…
The figure below shows a 50Hz balanced star-star three-phase circuit with line loss. The load impedance Z = 40 + j15.08 Ω.(a)Calculate the line load impedance ZL.(b)Determine the average power:(i)Delivered by the three-phase source.(ii)Delivered to the three-phase load.(iii)Absorbed by the three-phase line.(c)Calculate the power efficiency of the system.
Chapter 10 Solutions
Engineering Electromagnetics
Ch. 10 - The parameters of a certain transmission line...Ch. 10 - A sinusoidal wave on a transmission line is...Ch. 10 - Prob. 10.3PCh. 10 - A sinusoidal voltage V0, frequency , and phase...Ch. 10 - Two voltage waves of equal amplitude V0 and radian...Ch. 10 - A 50 load is attached to a 50-m section of the...Ch. 10 - Prob. 10.7PCh. 10 - An absolute measure of power is the dBm scale, in...Ch. 10 - A 100-m transmission line is used to propagate a...Ch. 10 - Two lossless transmission lines having different...
Ch. 10 - Two voltage waves of equal amplitude V0, which...Ch. 10 - In a circuit in which a sinusoidal voltage source...Ch. 10 - The skin effect mechanism in transmission lines is...Ch. 10 - A lossless transmission line having characteristic...Ch. 10 - Figure 10.29 See Problem 10.15. For the...Ch. 10 - A 100 lossless transmission line is connected to a...Ch. 10 - Determine the average power absorbed by each...Ch. 10 - The line shown in Figure 10.31 is lossless. Find s...Ch. 10 - A lossless transmission line is 50 cm in length...Ch. 10 - (a) Determine s on the transmission line of Figure...Ch. 10 - Prob. 10.21PCh. 10 - Prob. 10.22PCh. 10 - The normalized load on a lossless transmission...Ch. 10 - Prob. 10.24PCh. 10 - Prob. 10.25PCh. 10 - A 75 lossless line is of length 1.2 . It is...Ch. 10 - Prob. 10.27PCh. 10 - The wavelength on a certain lossless line is 10...Ch. 10 - Prob. 10.29PCh. 10 - A two-wire line constructed of lossless wire of...Ch. 10 - In order to compare the relative sharpness of the...Ch. 10 - In Figure 10.17, let ZL=250 and Z0=50. Find the...Ch. 10 - In Figure 10.17, let ZL=100+j150 and Z0=100. Find...Ch. 10 - The lossless line shown in Figure 10.35 is...Ch. 10 - Prob. 10.35PCh. 10 - The two-wire lines shown in Figure 10.36 are all...Ch. 10 - Prob. 10.37PCh. 10 - Repeat Problem 10.37, with, Z0=50 and RL=Rg=25....Ch. 10 - In the transmission line of Figure 10.20, Z0=50,...Ch. 10 - In the charged line of Figure 10.25, the...Ch. 10 - In the transmission line of Figure 10.37, the...Ch. 10 - Figure 10.38 See Problem 10.42. A simple frozen...Ch. 10 - Figure 10.39 See Problem 10.43. In Figure 10.39,...
Knowledge Booster
Similar questions
- Three concentric spherical shells 7=1, 7=2, 7=3 m, respectively, have charge distriutions 2, 4 and 5 μC/m². (a) Calculate the flux through 7=1.5 m² and r = 2.5m. (b) Find D at 7=0.5m, r=2.5m, and r=3.5m .arrow_forwardVerify the divergence theorem for the function A = r²a, + r sin 0 cos > a, over the surface of a quarter of a hemisphere defined by 0 < r < 3, 0 < & < π/2, 0 < 0 < π/2.arrow_forwardA charge distribution of the following form is set up in air: p₁ =10% e C/m³, where 7 is the radial distance of he spherical coordinates. Find the electric field intensity Ę everywhere.arrow_forward
- Q1. a) b) A 200V DC series motor has armature resistance of 0.1 Q and field resistance of 0.15 Q. The motor runs at a speed of 600 rev/min when the shaft torque is 28 Nm. Friction and windage losses at this speed are 251.3 W. Calculate armature current, copper loss and efficiency. A DC shunt motor has an armature resistance of 0.22, a field resistance of 200 and is connected to a 200 V supply. i) Draw the equivalent electrical circuit of the motor ii) If the motor runs at 1500 rpm and takes a current of 11 A from the supply, calculate the output torque of the motor iii) If the supply voltage is kept constant but the load torque is changed so that the supply current decreased to 6 A, determine the motor speed and the output torque.arrow_forwardThree concentric spherical shells 7=1, 7=2, 7=3 m, respectively, have charge distriutions 2, 4 and 5 µC/m². (a) Calculate the flux through 7=1.5m and r = 2.5 m. (b) Find D at 7=0.5m, r=2.5m, and 7= 3.5m.arrow_forwardim not sure this answer makes sense to me. The question is "Between which terminal block and screw numbers is relay coil CR-7 located?" The answer points towards lines in a seperate text? My answer was "TB-5B between screw numbers 2 & 10" could someone please review this and let me know if I am correct? (This is not for a graded assignment, It is not worth any marks and my professor has not released any answer keys)arrow_forward
- Need Handwritten solution do not use chatgpt or AIarrow_forwardThe figure below shows a 60-Hz balanced star-star three-phase circuit.(a) For the equivalent circuits of the load impedance Z shown in (ii), calculate the load impedance Z, the line current IA, the power factor, and the total average power delivered to the three-phase load.(b) The power factor is corrected to 1.00 by inserting a capacitance in parallel to the resistive and inductive load as shown in (iii). Determine the capacitance value C.arrow_forwardFor a series resonant circuit with the following specifications:1. A resonant frequency fn = 4.5kHz.2. A bandwidth BW = 150Hz3. A peak current Imax = 100mA at resonance.(a) Find the values of the quality factor, the resistance, the inductance, and the capacitance.(b) Calculate the power consumed and energy stored at the resonance.(c) Determine the inductance and capacitance required to reduce the bandwidth of the resonant circuit to 70 Hz without changing the resonant frequency or peak current.arrow_forward
- For a series resonant circuit with the following specifications:1. A resonant frequency fn = 4.5kHz.2. A bandwidth BW = 150Hz3. A peak current Imax = 100mA at resonance.(a) Find the values of the quality factor, the resistance, the inductance, and the capacitance Assiming V=5<0o.(b) Calculate the power consumed and energy stored at the resonance.(c) Determine the inductance and capacitance required to reduce the bandwidth of the resonant circuit to 70 Hz without changing the resonant frequency or peak current.arrow_forward. Apply the divergence theorem to evaluate A ds, where A = x²a¸ + y²a, + z²a, and S is the surface of the solid bounded by the cylinder p = 1 and planes z = 2 and z = 4. Sarrow_forwardDon't use ai to answer I will report you answerarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning
Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning