Engineering Electromagnetics
9th Edition
ISBN: 9780078028151
Author: Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 10.36P
The two-wire lines shown in Figure 10.36 are all lossless and have
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
6-A lossless T.L. has Zo = 100 N and is loaded by an unknown impedance
Its VSWR is 4 and the first voltage maximum is A/8 from the load .
Find the load impedance .
10 V
In the lossless transmission line system shown, the switch S is closed at t = 0.
a. Find the reflection coefficient IJ.
b. Find the reflection coefficient TL.
c. Find the transmission coefficient t+.
d. Complete the following reflection diagram in order to determine the total
voltages VA, VB, Vc, and VD.
752
201=7522
T
VA= 5
em
|V₁ = ?
|V₂ = ?
Figure P6
70₂= Son
T
V₂=?
4
[V=0]
Vc
15022
D6
Chapter 10 Solutions
Engineering Electromagnetics
Ch. 10 - The parameters of a certain transmission line...Ch. 10 - A sinusoidal wave on a transmission line is...Ch. 10 - Prob. 10.3PCh. 10 - A sinusoidal voltage V0, frequency , and phase...Ch. 10 - Two voltage waves of equal amplitude V0 and radian...Ch. 10 - A 50 load is attached to a 50-m section of the...Ch. 10 - Prob. 10.7PCh. 10 - An absolute measure of power is the dBm scale, in...Ch. 10 - A 100-m transmission line is used to propagate a...Ch. 10 - Two lossless transmission lines having different...
Ch. 10 - Two voltage waves of equal amplitude V0, which...Ch. 10 - In a circuit in which a sinusoidal voltage source...Ch. 10 - The skin effect mechanism in transmission lines is...Ch. 10 - A lossless transmission line having characteristic...Ch. 10 - Figure 10.29 See Problem 10.15. For the...Ch. 10 - A 100 lossless transmission line is connected to a...Ch. 10 - Determine the average power absorbed by each...Ch. 10 - The line shown in Figure 10.31 is lossless. Find s...Ch. 10 - A lossless transmission line is 50 cm in length...Ch. 10 - (a) Determine s on the transmission line of Figure...Ch. 10 - Prob. 10.21PCh. 10 - Prob. 10.22PCh. 10 - The normalized load on a lossless transmission...Ch. 10 - Prob. 10.24PCh. 10 - Prob. 10.25PCh. 10 - A 75 lossless line is of length 1.2 . It is...Ch. 10 - Prob. 10.27PCh. 10 - The wavelength on a certain lossless line is 10...Ch. 10 - Prob. 10.29PCh. 10 - A two-wire line constructed of lossless wire of...Ch. 10 - In order to compare the relative sharpness of the...Ch. 10 - In Figure 10.17, let ZL=250 and Z0=50. Find the...Ch. 10 - In Figure 10.17, let ZL=100+j150 and Z0=100. Find...Ch. 10 - The lossless line shown in Figure 10.35 is...Ch. 10 - Prob. 10.35PCh. 10 - The two-wire lines shown in Figure 10.36 are all...Ch. 10 - Prob. 10.37PCh. 10 - Repeat Problem 10.37, with, Z0=50 and RL=Rg=25....Ch. 10 - In the transmission line of Figure 10.20, Z0=50,...Ch. 10 - In the charged line of Figure 10.25, the...Ch. 10 - In the transmission line of Figure 10.37, the...Ch. 10 - Figure 10.38 See Problem 10.42. A simple frozen...Ch. 10 - Figure 10.39 See Problem 10.43. In Figure 10.39,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Please help with the solution.arrow_forward1. a. A purely reactive load impedance Z₁ =jX terminates a transmission line. Prove that the reflection coefficient magnitude |K| is always unity, assuming the characteristic impedance Zo is real. What is the VSWR of the line in this case? b. Consider the transmission line in the figure. i. Determine the SWR on transmission line ii. The input impedance If=102, find I, in the figure. WC 100/0*V] 20 922 Air, lossless Z-50 £2 2.72 40 2 ele 3002arrow_forwardNormalized admittance values zL= 0.4 - j0.3 with two load impedances connected in parallel with a 50 cm long coaxial line insulated with dielectric (€1 = 3) It is connected to a source with an operating frequency of 1 GHz. Find the distance of the voltage max and min to the load and the normalized input impedance of the line.arrow_forward
- b. Determine what is the necessary length and characteristic impedance of a cable to be used as a quarter-wave matching transformer so that it can eliminate the standing waves and subsequently provide a matched condition for a 180 O resistive load fed from a 45 0 transmission line. This condition is to exist for a frequency of 95 MHz. Given a velocity factor = 1.0.arrow_forwardb) A battery with an emf of 18V and series resistance Zg-2Z, are connected at t = 0 to the sending end of a lossless T.L which is a short-circuited at the far end. The characteristic impedance for this uniform T.L is Zo-500. Sketch the voltage as a function of time for both ends. (Use Zig-Zag diagram).arrow_forwardi need the answer quicklyarrow_forward
- Blue is the numerical answer, I need a detailed solution.arrow_forwardA system has a forward power of 60 W, reflected power of 3 W, and transmission line loss of –3 dB. What will be the observed loss on the ground? A system has a forward power of 200 W and a reflected power of 15 W, what is the return loss?arrow_forwardA 702 high-frequency lossless line is used at a frequency where 2 = 80cm with a load of 140+j91 2 a. Calculate the reflection coefficient and the SWR b. Determine the distance to the first voltage minimum from the load c. Determine the distance to the first voltage maximum from the load d. Calculate the impedance at the point where maximum voltages occurarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
How do Electric Transmission Lines Work?; Author: Practical Engineering;https://www.youtube.com/watch?v=qjY31x0m3d8;License: Standard Youtube License