Concept explainers
(a) Determine s on the transmission line of Figure 10.32. Note that the dielectric is air. (b) Find the input impedance. (c) If
Figure 10.32 See Problem 10.20.
(a)
The value ofs on the transmission line.
Answer to Problem 10.20P
The value of son the transmission line is 2.
Explanation of Solution
Given:
The given figure is shown below.
Concept Used:
The term s is calculated by
Calculation:
The reflection coefficient is
The magnitude of the reflection coefficient is,
The standing wave ratio is calculated as
Conclusion:
The value of s in the transmission line is 2.
(b)
The input impedance.
Answer to Problem 10.20P
The input impedance of the transmission line is
Explanation of Solution
Given:
The given figure is shown below.
Concept Used:
The input impedance is calculated by
Calculation:
The input impedance of the transmission line is calculated as
Let
Conclusion:
The input impedance of the transmission line is
(c)
The source current
Answer to Problem 10.20P
The source current is
Explanation of Solution
Given:
Calculation:
The source current is calculated by
Let
Conclusion:
Thus, the source current is
(d)
The value of L which produces maximum value for
Answer to Problem 10.20P
The value of L which produces maximum value for
Explanation of Solution
Given:
The given circuit is shown below.
Concept Used:
The maximum value of L is calculated by
Calculation:
The magnitude of the source current is,
Differentiating with respect to L,
Conclusion:
The value of L which produces maximum value for
(e)
The average power delivered by the source.
Answer to Problem 10.20P
The average power delivered by the source is,
Explanation of Solution
Given:
The given circuit is shown below.
Concept Used:
The average power is calculated by
Calculation:
Considering the real part only
Average power is calculated as
Conclusion:
Thus, the average power delivered by the source is,
(f)
Average power delivered to ZL.
Answer to Problem 10.20P
The average power delivered to the load is
Explanation of Solution
Given:
Concept Used:
The average power delivered is calculated by
Calculation:
Thus, the total power delivered to the load is
Conclusion:
Thus, the average power delivered to the load is
Want to see more full solutions like this?
Chapter 10 Solutions
Engineering Electromagnetics
- im not sure this answer makes sense to me. The question is "Between which terminal block and screw numbers is relay coil CR-7 located?" The answer points towards lines in a seperate text? My answer was "TB-5B between screw numbers 2 & 10" could someone please review this and let me know if I am correct? (This is not for a graded assignment, It is not worth any marks and my professor has not released any answer keys)arrow_forwardNeed Handwritten solution do not use chatgpt or AIarrow_forwardThe figure below shows a 60-Hz balanced star-star three-phase circuit.(a) For the equivalent circuits of the load impedance Z shown in (ii), calculate the load impedance Z, the line current IA, the power factor, and the total average power delivered to the three-phase load.(b) The power factor is corrected to 1.00 by inserting a capacitance in parallel to the resistive and inductive load as shown in (iii). Determine the capacitance value C.arrow_forward
- For a series resonant circuit with the following specifications:1. A resonant frequency fn = 4.5kHz.2. A bandwidth BW = 150Hz3. A peak current Imax = 100mA at resonance.(a) Find the values of the quality factor, the resistance, the inductance, and the capacitance.(b) Calculate the power consumed and energy stored at the resonance.(c) Determine the inductance and capacitance required to reduce the bandwidth of the resonant circuit to 70 Hz without changing the resonant frequency or peak current.arrow_forwardFor a series resonant circuit with the following specifications:1. A resonant frequency fn = 4.5kHz.2. A bandwidth BW = 150Hz3. A peak current Imax = 100mA at resonance.(a) Find the values of the quality factor, the resistance, the inductance, and the capacitance Assiming V=5<0o.(b) Calculate the power consumed and energy stored at the resonance.(c) Determine the inductance and capacitance required to reduce the bandwidth of the resonant circuit to 70 Hz without changing the resonant frequency or peak current.arrow_forward. Apply the divergence theorem to evaluate A ds, where A = x²a¸ + y²a, + z²a, and S is the surface of the solid bounded by the cylinder p = 1 and planes z = 2 and z = 4. Sarrow_forward
- Don't use ai to answer I will report you answerarrow_forwardThe figure below shows a 60-Hz balanced star-star three-phase circuit.(a) For the equivalent circuits of the load impedance Z shown in (ii), calculate the load impedance Z, the line current IA, the power factor, and the total average power delivered to the three-phase load.(b) The power factor is corrected to 1.00 by inserting a capacitance in parallel to the resistive and inductive load as shown in (iii). Determine the capacitance value C.arrow_forwardGiven the volume charge distribution in cylindrical coordinates as 12p nC/m³, P₁₁ = 10. 1arrow_forward.62 Find v(t) for t > 0 in the circuit in Fig. P7.62. t = 0 6 V + ww ww 1 ΚΩ 4 mA 1 ΚΩ 1 ΚΩ + 1 ΚΩ 200 μF Σ1ΚΩ vo(t Figure Pz.62arrow_forwardGiven the volume charge distribution in cylindrical coordinates as 12p nC/m³, P₁₁ = 10. 1arrow_forwardA source free LC circuit consists of a 3.3mH inductor and a 470μF capacitor in series. The instantaneous current flowing through the capacitor at time t=0 is 0.5A and the instantaneous capacitor voltage at t=0 is 3V. Determine an equation for the current flowing around the circuitarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill EducationFundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,