
Concept explainers
(a)
Interpretation:The hybridization and geometry of each C atom in the given molecule needs to be determined.
Concept Introduction:Lewis dot structure is also known as Lewis dot formula or electron dot structure. The bond formation between the atoms takes place due to the sharing of valence electrons of bonded atoms while the remaining electrons present in outer shell represented as lone pair of electrons.
Hybridization involves the mixing of atomic orbitals to form same number of hybrid orbitals. These hybrid orbitals overlap with atomic orbital of other atoms to form covalent bond. These hybrid orbitals are of same energy and share therefore overlap effectively to form covalent bond.
The hybridization gives idea about the geometry of each atom. It can be checked with the below formula:
Hybridization = Number of sigma bonds + Number of lone pairs on bonded atoms.
(b)
Interpretation:The hybridization and geometry of each C atom in the given molecule needs to be drawn.
Concept Introduction: Lewis dot structure is also known as Lewis dot formula or electron dot structure. The bond formation between the atoms takes place due to the sharing of valence electrons of bonded atoms while the remaining electrons present in outer shell represented as lone pair of electrons.
Hybridization involves the mixing of atomic orbitals to form same number of hybrid orbitals. These hybrid orbitals overlap with atomic orbital of other atoms to form covalent bond. These hybrid orbitals are of same energy and share therefore overlap effectively to form covalent bond.
The hybridization gives idea about the geometry of each atom. It can be checked with the below formula:
Hybridization = Number of sigma bonds + Number of lone pairs on bonded atoms.
(c)
Interpretation:The hybridization and geometry of each C atom in the given moleculeneeds to be determined.
Concept Introduction: Lewis dot structure is also known as Lewis dot formula or electron dot structure. The bond formation between the atoms takes place due to the sharing of valence electrons of bonded atoms while the remaining electrons present in outer shell represented as lone pair of electrons.
Hybridization involves the mixing of atomic orbitals to form same number of hybrid orbitals. These hybrid orbitals overlap with atomic orbital of other atoms to form covalent bond. These hybrid orbitals are of same energy and share therefore overlap effectively to form covalent bond.
The hybridization gives idea about the geometry of each atom. It can be checked with the below formula:
Hybridization = Number of sigma bonds + Number of lone pairs on bonded atoms.
(d)
Interpretation:The hybridization and geometry of each C atom in the given molecule needs to be determined.
Concept Introduction: Lewis dot structure is also known as Lewis dot formula or electron dot structure. The bond formation between the atoms takes place due to the sharing of valence electrons of bonded atoms while the remaining electrons present in outer shell represented as lone pair of electrons.
Hybridization involves the mixing of atomic orbitals to form same number of hybrid orbitals. These hybrid orbitals overlap with atomic orbital of other atoms to form covalent bond. These hybrid orbitals are of same energy and share therefore overlap effectively to form covalent bond.
The hybridization gives idea about the geometry of each atom. It can be checked with the below formula:
Hybridization = Number of sigma bonds + Number of lone pairs on bonded atoms.
(e)
Interpretation:The hybridization and geometry of each C atom in the given molecule needs to be determined.
Concept Introduction: Lewis dot structure is also known as Lewis dot formula or electron dot structure. The bond formation between the atoms takes place due to the sharing of valence electrons of bonded atoms while the remaining electrons present in outer shell represented as lone pair of electrons.
Hybridization involves the mixing of atomic orbitals to form same number of hybrid orbitals. These hybrid orbitals overlap with atomic orbital of other atoms to form covalent bond. These hybrid orbitals are of same energy and share therefore overlap effectively to form covalent bond.
The hybridization gives idea about the geometry of each atom. It can be checked with the below formula:
Hybridization = Number of sigma bonds + Number of lone pairs on bonded atoms.
(f)
Interpretation:The hybridization and geometry of each C atom in the given molecule needs to be determined.
Concept Introduction: Lewis dot structure is also known as Lewis dot formula or electron dot structure. The bond formation between the atoms takes place due to the sharing of valence electrons of bonded atoms while the remaining electrons present in outer shell represented as lone pair of electrons.
Hybridization involves the mixing of atomic orbitals to form same number of hybrid orbitals. These hybrid orbitals overlap with atomic orbital of other atoms to form covalent bond. These hybrid orbitals are of same energy and share therefore overlap effectively to form covalent bond.
The hybridization gives idea about the geometry of each atom. It can be checked with the below formula:
Hybridization = Number of sigma bonds + Number of lone pairs on bonded atoms.
(g)
Interpretation:The hybridization and geometry of each C atom in the given molecule needs to be determined.
Concept Introduction: Lewis dot structure is also known as Lewis dot formula or electron dot structure. The bond formation between the atoms takes place due to the sharing of valence electrons of bonded atoms while the remaining electrons present in outer shell represented as lone pair of electrons.
Hybridization involves the mixing of atomic orbitals to form same number of hybrid orbitals. These hybrid orbitals overlap with atomic orbital of other atoms to form covalent bond. These hybrid orbitals are of same energy and share therefore overlap effectively to form covalent bond.
The hybridization gives idea about the geometry of each atom. It can be checked with the below formula:
Hybridization = Number of sigma bonds + Number of lone pairs on bonded atoms.

Want to see the full answer?
Check out a sample textbook solution
Chapter 1 Solutions
Organic Chemistry: Structure and Function
- Synthesize 2-Hydroxy-2-phenylacetonitrile from phenylmethanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forward
- If possible, please provide the formula of the compound 3,3-dimethylbut-2-enal.arrow_forwardSynthesize 1,4-dibromobenzene from acetanilide (N-phenylacetamide) using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardIndicate the products obtained by mixing (3-oxo-3-phenylpropyl)triphenylphosphonium bromide with sodium hydride.arrow_forward
- We mix N-ethyl-2-hexanamine with excess methyl iodide and followed by heating with aqueous Ag2O. Indicate the major products obtained.arrow_forwardIndicate the products obtained by mixing acetophenone with iodine and NaOH.arrow_forwardIndicate the products obtained by mixing 2-Propanone and ethyllithium and performing a subsequent acid hydrolysis.arrow_forward
- Indicate the products obtained if (E)-2-butenal and 3-oxo-butanenitrile are mixed with sodium ethoxide in ethanol.arrow_forwardQuestion 3 (4 points), Draw a full arrow-pushing mechanism for the following reaction Please draw all structures clearly. Note that this intramolecular cyclization is analogous to the mechanism for halohydrin formation. COH Br + HBr Brarrow_forwardIndicate the products obtained if 2,2-dimethylpropanal and acetaldehyde are mixed with sodium ethoxide in ethanol.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning

