A 20 m long concrete pile with a rectangular cross-section of 460 mm × 460 mm fully embedded in the sand is shown in Figure P 12.2. Estimate the ultimate point load or tip resistance Qp by the following 4 methods and discuss. Necessary variables and formulae: Ap q' Pa Area of the pile tip Effective vertical stress at the level of the pile tip Atmospheric pressure 100 kN/m² Mean effective normal ground stress at the level of the pile point Irr Reduced rigidity index for the soil Ir Rigidity index for the soil Δ Average volumetric strain in the plastic zone below the pile point Ms Poisson's ratio of soil exp[(')tan '] 1) Terzaghi's method (Use Nq = 1-sin o' 2) Meyerhof's method (Use Table 12.6 for interpolation of N₁) Sand: Q = min(q', 0.5patano') N₁Ap 3) Vesic's method (Use Table 12.8 for interpolation of N and modulus of elasticity of soil of Es = 600pa) Sand: Qp='NAp = 3 where σ'o 1+2Ko q', Ko = 1 − sinø', Irr Ir = ' Ir = 1+1+A Es 2(1+)q'tand' TABLE 12.6 Interpolated Values of N₁₂ Based on Meyerhof's Theory 10 20 Bearing capacity factor, N* 9 40 60 80 100 200 For 25° ≤ ¢' ≤ 45°, µs = 0.1 +0.3 (0-25°), A = 0.005 (1-0-25°) 9 4) Coyle and Castello's method (Use Figure 12.20 for extrapolation of N₁₁) Sand: Qp=q'N Ap 0- Soil friction angle, &' (deg) N₁₁ 20 12.4 10 21 13.8 22 15.5 23 17.9 20 Concrete pile 460 mm X 460 mm 24 21.4 25 26.0 26 29.5 Loose sand 27 34.0 $1₁ = 30° 20 m y = 18.6 kN/m³ 28 39.7 29 46.5 Embedment ratio, L/D 40 30 56.7 50 T 31 68.2 32 81.0 60 60 T 32° 36° 6' = 30° 40° 38° 34° 33 96.0 34 115.0 70 35 143.0 Dense sand 36 168.0 Φ'2 = 420 y=18.5 kN/m³ 37 194.0 FIGURE 12.20 Variation of N with L/D (Based on Coyle and Castello, 1981) 38 231.0 39 276.0 FIGURE P 12.2 40 346.0 41 420.0 42 525.0 43 650.0 44 780.0 45 930.0 TABLE 12.8 Bearing Capacity Factors No Based on the Theory of Expansion of Cavities Irr $' 10 20 40 60 80 100 200 300 400 500 29 222222231335 12.12 15.95 20.98 24.64 27.61 30.16 39.70 46.61 52.24 57.06 26 13.18 17.47 23.15 27.30 30.69 33.60 44.53 52.51 59.02 64.62 27 14.33 19.12 25.52 30.21 34.06 37.37 49.88 59.05 66.56 73.04 28 15.57 20.91 28.10 33.40 37.75 41.51 55.77 66.29 74.93 82.40 16.90 22.85 30.90 36.87 41.79 46.05 62.27 74.30 84.21 92.80 30 18.24 24.95 33.95 40.66 46.21 51.02 69.43 83.14 94.48 104.33 19.88 27.22 37.27 44.79 51.03 56.46 77.31 92.90 105.84 117.11 21.55 29.68 40.88 49.30 56.30 62.41 85.96 103.66 118.39 131.24 23.34 32.34 44.80 54.20 62.05 68.92 95.46 115.51 132.24 146.87 34 25.28 35.21 49.05 59.54 68.33 76.02 105.90 128.55 147.51 164.12 27.36 38.32 53.67 65.36 75.17 83.78 117.33 142.89 164.33 183.16 36 29.60 41.68 58.68 71.69 82.62 92.24 129.87 158.65 182.85 204.14 37 32.02 45.31 64.13 78.57 90.75 101.48 143.61 175.95 203.23 227.26 38 34.63 49.24 70.03 86.05 99.60 111.56 158.65 194.94 225.62 252.71 39 37.44 53.50 76.45 94.20 109.24 122.54 175.11 215.78 250.23 280.71 40 40.47 58.10 83.40 103.05 119.74 134.52 193.13 238.62 277.26 311.50 41 43.74 63.07 90.96 112.68 131.18 147.59 212.84 263.67 306.94 345.34 42 47.27 68.46 99.16 123.16 143.64 161.83 234.40 291.13 339.52 382.53 43 51.08 74.30 108.08 134.56 157.21 177.36 257.99 321.22 375.28 423.39 44 55.20 80.62 117.76 146.97 172.00 194.31 283.80 354.20 414.51 468.28 45 59.66 87.48 128.28 160.48 188.12 212.79 312.03 390.35 457.57 517.58 Based on data from "Design of Pile Foundations," by A. S. Vesic. Synthesis of Highway Practice by American Association of State Highway and Transportation, 1977

Principles of Foundation Engineering (MindTap Course List)
9th Edition
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Braja M. Das, Nagaratnam Sivakugan
Chapter18: Sheet-pile Walls
Section: Chapter Questions
Problem 18.2P
icon
Related questions
Question

I need detailed help solving this exercise from Foundation Engineering.
Step by step, please.

A 20 m long concrete pile with a rectangular cross-section of 460 mm × 460 mm fully embedded in the sand is shown
in Figure P 12.2. Estimate the ultimate point load or tip resistance Qp by the following 4 methods and discuss.
Necessary variables and formulae:
Ap
q'
Pa
Area of the pile tip
Effective vertical stress at the level of the pile tip
Atmospheric pressure 100 kN/m²
Mean effective normal ground stress at the level of the pile point
Irr
Reduced rigidity index for the soil
Ir
Rigidity index for the soil
Δ
Average volumetric strain in the plastic zone below the pile point
Ms
Poisson's ratio of soil
exp[(')tan ']
1) Terzaghi's method (Use Nq
=
1-sin o'
2) Meyerhof's method (Use Table 12.6 for interpolation of N₁)
Sand: Q = min(q', 0.5patano') N₁Ap
3) Vesic's method (Use Table 12.8 for interpolation of N and modulus of elasticity of soil of Es = 600pa)
Sand: Qp='NAp
=
3
where σ'o 1+2Ko q', Ko = 1 − sinø', Irr Ir
=
'
Ir
=
1+1+A
Es
2(1+)q'tand'
TABLE 12.6 Interpolated Values of N₁₂ Based on
Meyerhof's Theory
10
20
Bearing capacity factor, N*
9
40 60 80 100
200
For 25° ≤ ¢' ≤ 45°, µs = 0.1 +0.3 (0-25°), A = 0.005 (1-0-25°) 9
4) Coyle and Castello's method (Use Figure 12.20 for extrapolation of N₁₁)
Sand: Qp=q'N Ap
0-
Soil friction angle, &' (deg)
N₁₁
20
12.4
10
21
13.8
22
15.5
23
17.9
20
Concrete pile
460 mm X 460 mm
24
21.4
25
26.0
26
29.5
Loose sand
27
34.0
$1₁ = 30°
20 m
y = 18.6 kN/m³
28
39.7
29
46.5
Embedment ratio, L/D
40
30
56.7
50
T
31
68.2
32
81.0
60
60
T
32° 36°
6'
= 30°
40°
38°
34°
33
96.0
34
115.0
70
35
143.0
Dense sand
36
168.0
Φ'2 = 420
y=18.5 kN/m³
37
194.0
FIGURE 12.20 Variation of N with L/D
(Based on Coyle and Castello, 1981)
38
231.0
39
276.0
FIGURE P 12.2
40
346.0
41
420.0
42
525.0
43
650.0
44
780.0
45
930.0
TABLE 12.8 Bearing Capacity Factors No Based on the Theory of Expansion of Cavities
Irr
$'
10
20
40
60
80
100
200
300
400
500
29
222222231335
12.12
15.95
20.98
24.64
27.61
30.16
39.70
46.61
52.24
57.06
26
13.18
17.47
23.15
27.30
30.69
33.60
44.53
52.51
59.02
64.62
27
14.33
19.12
25.52
30.21
34.06
37.37
49.88
59.05
66.56
73.04
28
15.57
20.91
28.10
33.40
37.75
41.51
55.77
66.29
74.93
82.40
16.90
22.85
30.90
36.87
41.79
46.05
62.27
74.30
84.21
92.80
30
18.24
24.95
33.95
40.66
46.21
51.02
69.43
83.14
94.48
104.33
19.88
27.22
37.27
44.79
51.03
56.46
77.31
92.90
105.84
117.11
21.55
29.68
40.88
49.30
56.30
62.41
85.96
103.66
118.39
131.24
23.34
32.34
44.80
54.20
62.05
68.92
95.46
115.51
132.24
146.87
34
25.28
35.21
49.05
59.54
68.33
76.02
105.90
128.55
147.51
164.12
27.36
38.32
53.67
65.36
75.17
83.78
117.33
142.89
164.33
183.16
36
29.60
41.68
58.68
71.69
82.62
92.24
129.87
158.65
182.85
204.14
37
32.02
45.31
64.13
78.57
90.75
101.48
143.61
175.95
203.23
227.26
38
34.63
49.24
70.03
86.05
99.60
111.56
158.65
194.94
225.62
252.71
39
37.44
53.50
76.45
94.20
109.24
122.54
175.11
215.78
250.23
280.71
40
40.47
58.10
83.40
103.05
119.74
134.52
193.13
238.62
277.26
311.50
41
43.74
63.07
90.96
112.68
131.18
147.59
212.84
263.67
306.94
345.34
42
47.27
68.46
99.16
123.16
143.64
161.83
234.40
291.13
339.52
382.53
43
51.08
74.30
108.08
134.56
157.21
177.36
257.99
321.22
375.28
423.39
44
55.20
80.62
117.76
146.97
172.00
194.31
283.80
354.20
414.51
468.28
45
59.66
87.48
128.28
160.48
188.12
212.79
312.03
390.35
457.57
517.58
Based on data from "Design of Pile Foundations," by A. S. Vesic. Synthesis of Highway Practice by American Association of State Highway and Transportation, 1977
Transcribed Image Text:A 20 m long concrete pile with a rectangular cross-section of 460 mm × 460 mm fully embedded in the sand is shown in Figure P 12.2. Estimate the ultimate point load or tip resistance Qp by the following 4 methods and discuss. Necessary variables and formulae: Ap q' Pa Area of the pile tip Effective vertical stress at the level of the pile tip Atmospheric pressure 100 kN/m² Mean effective normal ground stress at the level of the pile point Irr Reduced rigidity index for the soil Ir Rigidity index for the soil Δ Average volumetric strain in the plastic zone below the pile point Ms Poisson's ratio of soil exp[(')tan '] 1) Terzaghi's method (Use Nq = 1-sin o' 2) Meyerhof's method (Use Table 12.6 for interpolation of N₁) Sand: Q = min(q', 0.5patano') N₁Ap 3) Vesic's method (Use Table 12.8 for interpolation of N and modulus of elasticity of soil of Es = 600pa) Sand: Qp='NAp = 3 where σ'o 1+2Ko q', Ko = 1 − sinø', Irr Ir = ' Ir = 1+1+A Es 2(1+)q'tand' TABLE 12.6 Interpolated Values of N₁₂ Based on Meyerhof's Theory 10 20 Bearing capacity factor, N* 9 40 60 80 100 200 For 25° ≤ ¢' ≤ 45°, µs = 0.1 +0.3 (0-25°), A = 0.005 (1-0-25°) 9 4) Coyle and Castello's method (Use Figure 12.20 for extrapolation of N₁₁) Sand: Qp=q'N Ap 0- Soil friction angle, &' (deg) N₁₁ 20 12.4 10 21 13.8 22 15.5 23 17.9 20 Concrete pile 460 mm X 460 mm 24 21.4 25 26.0 26 29.5 Loose sand 27 34.0 $1₁ = 30° 20 m y = 18.6 kN/m³ 28 39.7 29 46.5 Embedment ratio, L/D 40 30 56.7 50 T 31 68.2 32 81.0 60 60 T 32° 36° 6' = 30° 40° 38° 34° 33 96.0 34 115.0 70 35 143.0 Dense sand 36 168.0 Φ'2 = 420 y=18.5 kN/m³ 37 194.0 FIGURE 12.20 Variation of N with L/D (Based on Coyle and Castello, 1981) 38 231.0 39 276.0 FIGURE P 12.2 40 346.0 41 420.0 42 525.0 43 650.0 44 780.0 45 930.0 TABLE 12.8 Bearing Capacity Factors No Based on the Theory of Expansion of Cavities Irr $' 10 20 40 60 80 100 200 300 400 500 29 222222231335 12.12 15.95 20.98 24.64 27.61 30.16 39.70 46.61 52.24 57.06 26 13.18 17.47 23.15 27.30 30.69 33.60 44.53 52.51 59.02 64.62 27 14.33 19.12 25.52 30.21 34.06 37.37 49.88 59.05 66.56 73.04 28 15.57 20.91 28.10 33.40 37.75 41.51 55.77 66.29 74.93 82.40 16.90 22.85 30.90 36.87 41.79 46.05 62.27 74.30 84.21 92.80 30 18.24 24.95 33.95 40.66 46.21 51.02 69.43 83.14 94.48 104.33 19.88 27.22 37.27 44.79 51.03 56.46 77.31 92.90 105.84 117.11 21.55 29.68 40.88 49.30 56.30 62.41 85.96 103.66 118.39 131.24 23.34 32.34 44.80 54.20 62.05 68.92 95.46 115.51 132.24 146.87 34 25.28 35.21 49.05 59.54 68.33 76.02 105.90 128.55 147.51 164.12 27.36 38.32 53.67 65.36 75.17 83.78 117.33 142.89 164.33 183.16 36 29.60 41.68 58.68 71.69 82.62 92.24 129.87 158.65 182.85 204.14 37 32.02 45.31 64.13 78.57 90.75 101.48 143.61 175.95 203.23 227.26 38 34.63 49.24 70.03 86.05 99.60 111.56 158.65 194.94 225.62 252.71 39 37.44 53.50 76.45 94.20 109.24 122.54 175.11 215.78 250.23 280.71 40 40.47 58.10 83.40 103.05 119.74 134.52 193.13 238.62 277.26 311.50 41 43.74 63.07 90.96 112.68 131.18 147.59 212.84 263.67 306.94 345.34 42 47.27 68.46 99.16 123.16 143.64 161.83 234.40 291.13 339.52 382.53 43 51.08 74.30 108.08 134.56 157.21 177.36 257.99 321.22 375.28 423.39 44 55.20 80.62 117.76 146.97 172.00 194.31 283.80 354.20 414.51 468.28 45 59.66 87.48 128.28 160.48 188.12 212.79 312.03 390.35 457.57 517.58 Based on data from "Design of Pile Foundations," by A. S. Vesic. Synthesis of Highway Practice by American Association of State Highway and Transportation, 1977
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap…
Fundamentals of Geotechnical Engineering (MindTap…
Civil Engineering
ISBN:
9781305635180
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781305081550
Author:
Braja M. Das
Publisher:
Cengage Learning