Fundamentals of Geotechnical Engineering (MindTap Course List)
5th Edition
ISBN: 9781305635180
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 18.12P
Determine the maximum load that can be allowed on the 450 mm diameter pile shown in Figure 18.36, with a safety factor of 3. Use the a method for computing the shaft friction.
FIG. 18.36
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
3. Determine the maximum load that can be allowed on a 45cm x 45cm diameter bored pile
shown in Figure-1 allowing a factor of safety of 3. Take SPT value at the bottom of pile 40.
Sand
y = 17.0 kN/m
o' = 31°
8 m
Sand
10 m
Ysat = 19.0 kN/m³
O' = 33°
Figure - 1
A concrete pile 50 ft long having a cross section of 15 in. x 15 in. is fully embedded in a saturated clay layer for which γsat = 121 lb/ft3, Φ = 0, and cu = 1600 lb/ft2. Determine the allowable load that the pile can carry. (Let FS = 3.) Use the a method Eq. (9.59) and Table 9.10 to estimate the skin friction and Vesic’s method for point load estimation.
I need detailed help solving the problem 12.13 about skin friction resistance, please.
Chapter 18 Solutions
Fundamentals of Geotechnical Engineering (MindTap Course List)
Ch. 18 - State whether the following are true or false. a....Ch. 18 - A 1500 kN load was applied on two 20 m long and...Ch. 18 - A 500 mm diameter and 20 m long concrete pile is...Ch. 18 - A 400-mm diameter and 15 m long concrete pile is...Ch. 18 - A 400 mm 400 mm square precast concrete pile of...Ch. 18 - Prob. 18.6PCh. 18 - Prob. 18.7PCh. 18 - Prob. 18.8PCh. 18 - Determine the maximum load that can be allowed on...Ch. 18 - Prob. 18.10P
Ch. 18 - Redo Problem 18.10 using the method for...Ch. 18 - Determine the maximum load that can be allowed on...Ch. 18 - Prob. 18.13PCh. 18 - A steel pile (H-section; HP 360 1.491; see Table...Ch. 18 - A concrete pile is 18 m long and has a cross...Ch. 18 - Prob. 18.16PCh. 18 - Prob. 18.17PCh. 18 - Prob. 18.18PCh. 18 - Prob. 18.19PCh. 18 - Figure 18.26a shows a pile. Let L = 20 m, D = 450...Ch. 18 - Refer to Figure 18.26b. Let L = 15.24 m, fill =...Ch. 18 - Prob. 18.22PCh. 18 - Figure 18.39 shows a 3 5 pile group consisting of...Ch. 18 - The section of a 4 4 group pile in a layered...Ch. 18 - Prob. 18.25PCh. 18 - Prob. 18.26CTP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- Determine the maximum load that can be allowed on the 450 mm diameter pile shown in Figure P12.9, with a factor of safety of 3. Use the α method and Table 12.11 for determining the skin friction and Eq. (12.20) for determining the point load.arrow_forwardDetermine the maximum load that can be allowed on a 450 mm diameter driven pile shown in Figure P12.6, allowing a factor of safety of 3. Use K = 1.5 Ko and = 0.65 in computing the shaft load. Use Meyerhofs method for computing the point load.arrow_forwardPlease help me solve Determine the length, L, of a driven timber pile required to support the load shown in Figure P13.4. The diameter of the pile is 450 mm. A factor of safety of 2 is required. Assume the pile–soil interface friction is equal to the critical state friction angle.arrow_forward
- Determine the length, L, required to support the load as in Figure below. The diameter of the pile is 450 mm. A factor of safety of 3 is required. Use Meyerhof’s method for calculating load carrying capacity of the pile point and α method to calculate friction resistance capacity.arrow_forwardAnswer both partsarrow_forward3. A concrete pile 15.24 m long having a cross section of 406 mm × 406 mm is fully embedded in a saturated clay layer for which Ysat 19.02 kN/m³, Ø = 0, and cu=76.7 kN/m². Determine the allowable load that the pile can carry (Assuming FS-3). Use the a method to estimate the skin friction and Vesic's method for point load estimation.arrow_forward
- 2. Consider a group of 450 mm x 450 mm reinforced concrete piles were driven into thick loose sand layer with the average unit weight and internal friction angle of 16 kN/m3 and 30°, respectively. Estimate the group pile capacity with the arrangement as shown in Figure Q2 if the length of pile embedment is 30 m assuming ground water table is far below the ground surface. Use 8 = 0.80 and K = 1.5Ko. 3B 3B 3B 1 3 3.5B b 'P 9. 10 11 a 3.5B 2 4 1.5B 1.5B 1.5B 1.5B 1.5B 1.5B Figure Q2arrow_forwardQ1...(d,e)arrow_forwardConsider a continuous flight auger pile in a sandy soil deposit 10 m long with a diameter of 0.45 m. Following is the variation of standard penetration resistance values (N60) with depth. Estimate the ultimate load-carrying capacity of the pile. Assume unit weight of soil, γ = 15.5 kN/m3.arrow_forward
- A driven closed-ended pile, circular in cross section, is shown in Figure P 9.4.Calculate the following.a. The ultimate point load using Meyerhof’s procedure.b. The ultimate point load using Vesic’s procedure. Take Irr = 50.c. An approximate ultimate point load on the basis of parts (a) and (b).d. The ultimate frictional resistance Qs. [Use Eqs. (9.40 (L' ≈ 15 D)) through (9.42), and take K = 1.4 and ẟ' = 0.6 Φ'.]e. The allowable load of the pile (use FS = 4).arrow_forwardDetermine the allowable load capacity of the 0.4 m diameter pile shown in Figure 4. The fill is new and unconsolidated. A steel shell is proposed around the pile within the fill layer to eliminate the negative friction. The ground water level is at the middle of the fill layer. Use a factor of safety of 2.5. (y=moist unit weight; ysat=saturated unit weight) Steel shell Fill layer Ysat = 17 kN/m, Y=16 kN/m³ O'= 30° K=1.2 8'=0.86' 4 m %3D Clay (overconsolidated) Ysat = 19.5kN/m³ 10 m PR' = 30° 8'=0.6¢R' Sand Ysat = 18 kN/m³, y = 16.5 kN/m3 O'= 30° K=1.3 18 m 8'=0.86' 0.5 marrow_forwardA 20 m long concrete pile is shown in Figure P12.2. Estimate the ultimate point load Qp by a. Meyerhofs method b. Vesics method c. Coyle and Castellos method Use m = 600 in Eq. (12.28).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
CE 414 Lecture 02: LRFD Load Combinations (2021.01.22); Author: Gregory Michaelson;https://www.youtube.com/watch?v=6npEyQ-2T5w;License: Standard Youtube License