Fundamentals of Geotechnical Engineering (MindTap Course List)
5th Edition
ISBN: 9781305635180
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 18.20P
Figure 18.26a shows a pile. Let L = 20 m, D = 450 mm. Hf = 4m, γf = 17.5 kN/m3, ϕ′fill = 25°. Determine the total downward drag force on the pile. Assume that the fill is located above the water table and that δ′ = 0.5 ϕ′fill.
FIG. 18.26 Negative skin friction
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please answer 11.15
(Answer)
32.5kN
Refer to the pile shown in Figure P 9.1. Estimate the side resistance Qs bya. Using Eqs. (9.40) through (9.42). Use K = 1.5 and ẟ' = 0.6 Φ'b. Coyle and Castello’s method [Eq. (9.44)]
Consider a continuous flight auger pile in a sandy soil deposit 10 m long with a diameter of 0.45 m. Following is the variation of standard penetration resistance values (N60) with depth. Estimate the ultimate load-carrying capacity of the pile. Assume unit weight of soil, γ = 15.5 kN/m3.
Chapter 18 Solutions
Fundamentals of Geotechnical Engineering (MindTap Course List)
Ch. 18 - State whether the following are true or false. a....Ch. 18 - A 1500 kN load was applied on two 20 m long and...Ch. 18 - A 500 mm diameter and 20 m long concrete pile is...Ch. 18 - A 400-mm diameter and 15 m long concrete pile is...Ch. 18 - A 400 mm 400 mm square precast concrete pile of...Ch. 18 - Prob. 18.6PCh. 18 - Prob. 18.7PCh. 18 - Prob. 18.8PCh. 18 - Determine the maximum load that can be allowed on...Ch. 18 - Prob. 18.10P
Ch. 18 - Redo Problem 18.10 using the method for...Ch. 18 - Determine the maximum load that can be allowed on...Ch. 18 - Prob. 18.13PCh. 18 - A steel pile (H-section; HP 360 1.491; see Table...Ch. 18 - A concrete pile is 18 m long and has a cross...Ch. 18 - Prob. 18.16PCh. 18 - Prob. 18.17PCh. 18 - Prob. 18.18PCh. 18 - Prob. 18.19PCh. 18 - Figure 18.26a shows a pile. Let L = 20 m, D = 450...Ch. 18 - Refer to Figure 18.26b. Let L = 15.24 m, fill =...Ch. 18 - Prob. 18.22PCh. 18 - Figure 18.39 shows a 3 5 pile group consisting of...Ch. 18 - The section of a 4 4 group pile in a layered...Ch. 18 - Prob. 18.25PCh. 18 - Prob. 18.26CTP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- 11.22 A concrete pile measuring 0.406 m X 0.406 m in cross section is 18.3 m long. It is fully embedded in a layer of sand. The following is an approximation of the me- chanical cone penetration resistance (q.) and the friction ratio (F) for the sand layer. Estimate the allowable bearing capacity of the pile. Use FS = 4. Depth below ground surface (m) 9. (kN/m²) F, (%) 0-6.1 2803 2.3 6.1-13.7 3747 2.7 13.7-19.8 8055 2.8arrow_forwardA reinforced concrete circular pile is driven to the soil as shown below. Calculate the negative skin friction force acting on the pile.arrow_forwardRedo Problem 9.23 assuming that the water table coincides with the top of the fill and that γsat(fill) = 19.8 kN/m3. If the other quantities remain the same, what would be the downward drag force on the pile? Assume ẟ' = 0.5 Φ'fill.arrow_forward
- A 450 mm x 450 mm concrete pile 20.0 m long is driven into sand deposits with y = 17 kN/m³ and = 30°. Find the ultimate load i.e. point load Qp by Meyerhoff's method and Janbu method. Meyerhoff's N = 55, Atmospheric pressure = 100 kN/m², Janbu's N = 18.4arrow_forward4. For the cantilever sheet pile wall, compute the depth of Embedment of sheet pile by the approximate method. T 3 m 3 m D 3 Y = 1.9 t/m³ = 30° Y' = 1.0 t/m³ = 30°arrow_forwardPlease answer 11.7arrow_forward
- A concrete pile 20 m long having a cross section of 0.46 m × 0.46 m is fully embedded in a saturated clay layer. For the clay, given: Yat = 18 kN/m², = 0, and Cu = 80 kN/m?. Determine the allowable load that the pile can carry (FS = 3). Use %3D the A method to estimate the skin resistance.arrow_forwardConsider a drilled, rough concrete pile with diameter B = 1m and length D = 10m embedded in a site underlain by a 5m thick layer of sand with fiction angle = 41 degrees and Ko = 0.5 that lies over an 8m thick layer of clay with fiction angle = 36 degrees, Ko = 0.38, and Su = 70 kPa. a. Determine the long term end bearing capacity of the pile. b. Determine the long term capacity of the pile.arrow_forwardDetermine the diameter of 70 ft long pile driven in the medium dense sand (Shown in Figure). Design load is 185Kips and factor of safety can be assumed to be 2.5. Frictional coefficient is 0.45 Sand y = 115lb/ft3 Ø = 28° K = 0.80 30 %3D Sand 128lb/ft %3! Ysat Ø= 30° K = 0.85 33°C 70arrow_forward
- A driven closed-ended pile, circular in cross section, is shown in Figure 1. Calculate the following. a. The ultimate point load using Meyerhof’s procedure. b. The ultimate point load using Vesic’s procedure. Take Irr = 50.arrow_forward12.2 A 20 m long concrete pile is shown in Figure P12.2. Estimate the ultimate point load Q, by a. Meyerhof's method b. Vesic's method c. Coyle and Castello's method Use m = 600 in Eq. (12.28). Concrete pile 460 mm x 460 mm 20 m Loose sand +1-30° y- 18.6 kN/m³ FIGURE P 12.2 Dense sand 2-42° y 18.5 kN/m³arrow_forward3. Determine the maximum load that can be allowed on a 45cm x 45cm diameter bored pile shown in Figure-1 allowing a factor of safety of 3. Take SPT value at the bottom of pile 40. Sand y = 17.0 kN/m o' = 31° 8 m Sand 10 m Ysat = 19.0 kN/m³ O' = 33° Figure - 1arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
How to build angle braces; Author: Country Living With The Harnish's;https://www.youtube.com/watch?v=3cKselS6rxY;License: Standard Youtube License