Fundamentals of Geotechnical Engineering (MindTap Course List)
5th Edition
ISBN: 9781305635180
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18, Problem 18.8P
To determine
Find the allowable load carrying capacity of the pile
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
12.2 A 20 m long concrete pile is shown in Figure P12.2.
Estimate the ultimate point load Q, by
a. Meyerhof's method
b. Vesic's method
c. Coyle and Castello's method
Use m = 600 in Eq. (12.28).
Concrete pile
460 mm X 460 mm
Loose sand
di = 30°
y = 18.6 kN/m3
20 m
F
Dense sand
$2 = 42°
y = 18.5 kN/m
i need the answer quickly
A 20-m-long concrete pile is shown in Figure P9.1. Estimate the ultimate point load
Q, by
a. Meyerhof's method
b. Vesic's method
c. Coyle and Castello's method
Use m = 600 in Eq. (9.26).
9.1
Concrete pile
460 mm x 460 mm
Loose sand
di = 30°
y = 18.6 kN/m3
20 m
Dense sand
d'2 = 42°
y = 18.5 kN/m3
Figure P9.1
Chapter 18 Solutions
Fundamentals of Geotechnical Engineering (MindTap Course List)
Ch. 18 - State whether the following are true or false. a....Ch. 18 - A 1500 kN load was applied on two 20 m long and...Ch. 18 - A 500 mm diameter and 20 m long concrete pile is...Ch. 18 - A 400-mm diameter and 15 m long concrete pile is...Ch. 18 - A 400 mm 400 mm square precast concrete pile of...Ch. 18 - Prob. 18.6PCh. 18 - Prob. 18.7PCh. 18 - Prob. 18.8PCh. 18 - Determine the maximum load that can be allowed on...Ch. 18 - Prob. 18.10P
Ch. 18 - Redo Problem 18.10 using the method for...Ch. 18 - Determine the maximum load that can be allowed on...Ch. 18 - Prob. 18.13PCh. 18 - A steel pile (H-section; HP 360 1.491; see Table...Ch. 18 - A concrete pile is 18 m long and has a cross...Ch. 18 - Prob. 18.16PCh. 18 - Prob. 18.17PCh. 18 - Prob. 18.18PCh. 18 - Prob. 18.19PCh. 18 - Figure 18.26a shows a pile. Let L = 20 m, D = 450...Ch. 18 - Refer to Figure 18.26b. Let L = 15.24 m, fill =...Ch. 18 - Prob. 18.22PCh. 18 - Figure 18.39 shows a 3 5 pile group consisting of...Ch. 18 - The section of a 4 4 group pile in a layered...Ch. 18 - Prob. 18.25PCh. 18 - Prob. 18.26CTP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- A concrete pile 20 m long with a cross section of 400 mm x 400 mm is fully embedded in a saturated clay layer. The clay has the following properties: γsat = 18.5 kN/m3, ϕ= 0 and cu = 70 kPa. Assume that the water table rises to the tip of the pile. Determine the allowable load that the pile can carry (FS=3). Use the α and λ method to estimate the skin resistance.arrow_forwardA concrete pile 20 m long having a cross section of 0.46 m × 0.46 m is fully embedded in a saturated clay layer. For the clay, given: Yat = 18 kN/m², = 0, and Cu = 80 kN/m?. Determine the allowable load that the pile can carry (FS = 3). Use %3D the A method to estimate the skin resistance.arrow_forwardPlease answer 11.22arrow_forward
- I need a solution to the problem - 12.4arrow_forwardA driven closed-ended pile, circular in cross section, is shown in Figure 1. Calculate the following. a. The ultimate point load using Meyerhof’s procedure. b. The ultimate point load using Vesic’s procedure. Take Irr = 50.arrow_forwardA 0.36-m square prestressed concrete pile is to be driven in a clayey soil. The design capacity of the pile is 360 kN, with a factor of safety of 2.00. The unconfined compression strength of clay is 115 kPa. Unit weight of clayey soil is 18 kN/m³. Which of the following most nearly gives the length of the pile in meters if the frictional constant is α = 0.76?arrow_forward
- A 450 mm x 450 mm concrete pile 20.0 m long is driven into sand deposits with y = 17 kN/m³ and = 30°. Find the ultimate load i.e. point load Qp by Meyerhoff's method and Janbu method. Meyerhoff's N = 55, Atmospheric pressure = 100 kN/m², Janbu's N = 18.4arrow_forward12.20 A 600 mm diameter and 25 m long driven concrete pile car- ries a column load of 1200 kN. It is estimated that the shaft carries 900 kN and the point carries 300 kN. Determine the settlement of the pile head using the Poulos and Davis method with the following data: E = 25 MN/m², Ep = 30,000 MN/m², and μ = 0.2arrow_forwardPlease answer 11.9arrow_forward
- Refer to the pile shown in Figure P 9.1. Estimate the side resistance Qs bya. Using Eqs. (9.40) through (9.42). Use K = 1.5 and ẟ' = 0.6 Φ'b. Coyle and Castello’s method [Eq. (9.44)]arrow_forward11.10 A concrete pile 0.406 m x 0.406 m in cross section is shown in Figure P11.10. Calculate the ultimate skin friction resistance by using the a. a method b. A method c. ẞ method Use =20° for all clays, which are normally consolidated. 6.1 m 12.2 m 0.406 m Figure P11.10 Groundwater table Ysat Silty clay 18.55 kN/m³ Cu = 35 kN/m² Silty clay Ysat = 19.24 kN/m³ Cu = 75 kN/m²arrow_forwardRedo Problem 9.23 assuming that the water table coincides with the top of the fill and that γsat(fill) = 19.8 kN/m3. If the other quantities remain the same, what would be the downward drag force on the pile? Assume ẟ' = 0.5 Φ'fill.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning