1. In what kind of geological conditions and for what types of building would mat foundations be preferred over other forms of foundation? What are the key advantages of mat foundation under these conditions? If the groundwater table at a site located above the slab of the mat foundation and would rise considerably in wet seasons, indicate that whether it may cause any problem to the building and the means to overcome them. Why we usually use undrained shear strength instead of effective cohesion and effective friction angle to determine the factor of safety for bearing capacity when designing mat foundation? Figure, Tables, and Equations: 7.5.14c.(1+0.1951+0.4%)+4 = B (10.11) B = Qu(net) quq = 5.14c 1 + 0.195- q-5.14, (1+0.1951+04) (10.12) all(net) Qu(net) FS 3c,(1 = 1.713c 10.195 1952) (1 D 1+0.4- (10.13) B ← For FS=3 General bearing capacity equation: qu = c'NcFcs Fca Fci+q'NqFqsFqaFqi + 0.5yBNy Fys Fya Fyi Shape factors by De Beer (1970) B N = Fes 1+()( LNC Depth factors by Hansen (1970) Fed = 1 + 0.4 (4) Inclination factors by Meyerhof (1963) and Hanna and Meyerhof (1981) Fci = Fqi = (1- 90°)² Fqs = 1 + (→) t B tan o' = Fad 1+2 tan o' (1 − sin o') 2. Df - B Fyi = (1-2)² Fy, = 1-0.4(+) B Fyd = = 1 Bearing capacity factors Ne, Na, Ny TABLE 6.2 Bearing Capacity Factors From Eqs. (6.30), (6.29), and (6.31) (Continued) No Na Ny $' No Na Ny 22 16.88 7.82 7.13 37 55.63 42.92 66.19 TABLE 6.2 Bearing Capacity Factors From Eqs. (6.30), (6.29), and (6.31) 23 18.05 8.66 8.20 38 61.35 48.93 78.03 24 19.32 9.60 9.44 39 67.87 55.96 92.25 $' Ne N₁ Ny $' No Na Ny 25 20.72 10.66 10.88 40 75.31 64.20 109.41 0 5.14 1.00 0.00 11 8.80 2.71 1.44 26 22.25 11.85 12.54 41 83.86 73.90 130.22 1 5.38 1.09 0.07 12 9.28 2.97 1.69 27 23.94 13.20 14.47 42 93.71 85.38 2 5.63 1.20 155.55 0.15 13 9.81 3.26 1.97 28 25.80 14.72 16.72 43 105.11 99.02 186.54 3 5.90 1.31 0.24 14 10.37 3.59 2.29 29 27.86 16.44 19.34 44 118.37 115.31 224.64 4 6.19 1.43 0.34 15 10.98 3.94 2.65 30 30.14 18.40 22.40 45 133.88 134.88 271.76 5 6.49 1.57 0.45 16 11.63 4.34 3.06 31 32.67 20.63 25.99 46 152.10 158.51 330.35 6 6.81 1.72 0.57 17 12.34 4.77 3.53 7 7.16 1.88 0.71 18 13.10 5.26 4.07 333 35.49 23.18 30.22 47 173.64 187.21 403.67 38.64 26.09 35.19 48 199.26 222.31 496.01 8 7.53 2.06 0.86 19 13.93 5.80 4.68 34 42.16 29.44 41.06 49 229.93 265.51 9 7.92 2.25 1.03 20 14.83 613.16 6.40 5.39 35 46.12 33.30 48.03 50 266.89 319.07 762.89 10 8.35 2.47 1.22 21 15.82 7.07 6.20 36 50.59 37.75 56.31 (continued)
1. In what kind of geological conditions and for what types of building would mat foundations be preferred over other forms of foundation? What are the key advantages of mat foundation under these conditions? If the groundwater table at a site located above the slab of the mat foundation and would rise considerably in wet seasons, indicate that whether it may cause any problem to the building and the means to overcome them. Why we usually use undrained shear strength instead of effective cohesion and effective friction angle to determine the factor of safety for bearing capacity when designing mat foundation? Figure, Tables, and Equations: 7.5.14c.(1+0.1951+0.4%)+4 = B (10.11) B = Qu(net) quq = 5.14c 1 + 0.195- q-5.14, (1+0.1951+04) (10.12) all(net) Qu(net) FS 3c,(1 = 1.713c 10.195 1952) (1 D 1+0.4- (10.13) B ← For FS=3 General bearing capacity equation: qu = c'NcFcs Fca Fci+q'NqFqsFqaFqi + 0.5yBNy Fys Fya Fyi Shape factors by De Beer (1970) B N = Fes 1+()( LNC Depth factors by Hansen (1970) Fed = 1 + 0.4 (4) Inclination factors by Meyerhof (1963) and Hanna and Meyerhof (1981) Fci = Fqi = (1- 90°)² Fqs = 1 + (→) t B tan o' = Fad 1+2 tan o' (1 − sin o') 2. Df - B Fyi = (1-2)² Fy, = 1-0.4(+) B Fyd = = 1 Bearing capacity factors Ne, Na, Ny TABLE 6.2 Bearing Capacity Factors From Eqs. (6.30), (6.29), and (6.31) (Continued) No Na Ny $' No Na Ny 22 16.88 7.82 7.13 37 55.63 42.92 66.19 TABLE 6.2 Bearing Capacity Factors From Eqs. (6.30), (6.29), and (6.31) 23 18.05 8.66 8.20 38 61.35 48.93 78.03 24 19.32 9.60 9.44 39 67.87 55.96 92.25 $' Ne N₁ Ny $' No Na Ny 25 20.72 10.66 10.88 40 75.31 64.20 109.41 0 5.14 1.00 0.00 11 8.80 2.71 1.44 26 22.25 11.85 12.54 41 83.86 73.90 130.22 1 5.38 1.09 0.07 12 9.28 2.97 1.69 27 23.94 13.20 14.47 42 93.71 85.38 2 5.63 1.20 155.55 0.15 13 9.81 3.26 1.97 28 25.80 14.72 16.72 43 105.11 99.02 186.54 3 5.90 1.31 0.24 14 10.37 3.59 2.29 29 27.86 16.44 19.34 44 118.37 115.31 224.64 4 6.19 1.43 0.34 15 10.98 3.94 2.65 30 30.14 18.40 22.40 45 133.88 134.88 271.76 5 6.49 1.57 0.45 16 11.63 4.34 3.06 31 32.67 20.63 25.99 46 152.10 158.51 330.35 6 6.81 1.72 0.57 17 12.34 4.77 3.53 7 7.16 1.88 0.71 18 13.10 5.26 4.07 333 35.49 23.18 30.22 47 173.64 187.21 403.67 38.64 26.09 35.19 48 199.26 222.31 496.01 8 7.53 2.06 0.86 19 13.93 5.80 4.68 34 42.16 29.44 41.06 49 229.93 265.51 9 7.92 2.25 1.03 20 14.83 613.16 6.40 5.39 35 46.12 33.30 48.03 50 266.89 319.07 762.89 10 8.35 2.47 1.22 21 15.82 7.07 6.20 36 50.59 37.75 56.31 (continued)
Principles of Foundation Engineering (MindTap Course List)
8th Edition
ISBN:9781305081550
Author:Braja M. Das
Publisher:Braja M. Das
Chapter8: Mat Foundations
Section: Chapter Questions
Problem 8.4P
Related questions
Question
100%
I need detailed help solving this exercise from Foundation Engineering.
Step by step, please.

Transcribed Image Text:1. In what kind of geological conditions and for what types of building would mat foundations be preferred over other
forms of foundation? What are the key advantages of mat foundation under these conditions? If the groundwater table
at a site located above the slab of the mat foundation and would rise considerably in wet seasons, indicate that whether
it may cause any problem to the building and the means to overcome them. Why we usually use undrained shear strength
instead of effective cohesion and effective friction angle to determine the factor of safety for bearing capacity when
designing mat foundation?
Figure, Tables, and Equations:
7.5.14c.(1+0.1951+0.4%)+4
=
B
(10.11)
B
=
Qu(net) quq = 5.14c 1 + 0.195-
q-5.14, (1+0.1951+04)
(10.12)
all(net)
Qu(net)
FS
3c,(1
= 1.713c 10.195
1952) (1
D
1+0.4-
(10.13)
B
←
For FS=3
General bearing capacity equation: qu = c'NcFcs Fca Fci+q'NqFqsFqaFqi + 0.5yBNy Fys Fya Fyi
Shape factors by De Beer (1970)
B N
=
Fes 1+()(
LNC
Depth factors by Hansen (1970)
Fed = 1 + 0.4 (4)
Inclination factors by Meyerhof (1963)
and Hanna and Meyerhof (1981)
Fci = Fqi = (1-
90°)²
Fqs = 1 + (→) t
B
tan o'
=
Fad 1+2 tan o' (1 − sin o') 2.
Df
-
B
Fyi = (1-2)²
Fy, = 1-0.4(+)
B
Fyd =
= 1
Bearing capacity factors Ne, Na, Ny
TABLE 6.2 Bearing Capacity Factors From Eqs. (6.30), (6.29), and (6.31) (Continued)
No
Na
Ny
$'
No
Na
Ny
22
16.88
7.82
7.13
37
55.63
42.92
66.19
TABLE 6.2 Bearing Capacity Factors From Eqs. (6.30), (6.29), and (6.31)
23
18.05
8.66
8.20
38
61.35
48.93
78.03
24
19.32
9.60
9.44
39
67.87
55.96
92.25
$'
Ne
N₁
Ny
$'
No
Na
Ny
25
20.72
10.66
10.88
40
75.31
64.20
109.41
0
5.14
1.00
0.00
11
8.80
2.71
1.44
26
22.25
11.85
12.54
41
83.86
73.90
130.22
1
5.38
1.09
0.07
12
9.28
2.97
1.69
27
23.94
13.20
14.47
42
93.71
85.38
2
5.63
1.20
155.55
0.15
13
9.81
3.26
1.97
28
25.80
14.72
16.72
43
105.11
99.02
186.54
3
5.90
1.31
0.24
14
10.37
3.59
2.29
29
27.86
16.44
19.34
44
118.37
115.31
224.64
4
6.19
1.43
0.34
15
10.98
3.94
2.65
30
30.14
18.40
22.40
45
133.88
134.88
271.76
5
6.49
1.57
0.45
16
11.63
4.34
3.06
31
32.67
20.63
25.99
46
152.10
158.51
330.35
6
6.81
1.72
0.57
17
12.34
4.77
3.53
7
7.16
1.88
0.71
18
13.10
5.26
4.07
333
35.49
23.18
30.22
47
173.64
187.21
403.67
38.64
26.09
35.19
48
199.26
222.31
496.01
8
7.53
2.06
0.86
19
13.93
5.80
4.68
34
42.16
29.44
41.06
49
229.93
265.51
9
7.92
2.25
1.03
20
14.83
613.16
6.40
5.39
35
46.12
33.30
48.03
50
266.89
319.07
762.89
10
8.35
2.47
1.22
21
15.82
7.07
6.20
36
50.59
37.75
56.31
(continued)
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 4 images

Recommended textbooks for you

Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781305081550
Author:
Braja M. Das
Publisher:
Cengage Learning

Principles of Geotechnical Engineering (MindTap C…
Civil Engineering
ISBN:
9781305970939
Author:
Braja M. Das, Khaled Sobhan
Publisher:
Cengage Learning

Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning

Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781305081550
Author:
Braja M. Das
Publisher:
Cengage Learning

Principles of Geotechnical Engineering (MindTap C…
Civil Engineering
ISBN:
9781305970939
Author:
Braja M. Das, Khaled Sobhan
Publisher:
Cengage Learning

Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning

Fundamentals of Geotechnical Engineering (MindTap…
Civil Engineering
ISBN:
9781305635180
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning

Construction Materials, Methods and Techniques (M…
Civil Engineering
ISBN:
9781305086272
Author:
William P. Spence, Eva Kultermann
Publisher:
Cengage Learning