Fundamentals of Geotechnical Engineering (MindTap Course List)
5th Edition
ISBN: 9781305635180
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 20, Problem 20.3P
Repeat Problem 20.2 based on limit state design, using the factors given in Table 20.4.
20.2 A continuous foundation is required in a soil where c′ = 10 kN/m2,
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please solve this question.
Q. No. 1: A foundation 4x4 m is located at a depth of 1 m in a layer of saturated clay 13 m thick. Characteristic Parameters for the clay are cu=100 kN/m2, u=0, c'=0, '=32o, Cc=0.36, eo=0.784, NCC, sat=21 kN/m3. Determine the design load of the foundation to ensure (a) a factor of safety with respect to shear failure of 3 using the traditional method, (b) consolidation settlement does not exceed 30 mm.
A column foundation is 3 m × 2 m in plan. Given: Dƒ = 1.5 m, þ' = 30°, c′ = 80 kN/m².
Using the general bearing capacity equation (CFEM see class slides from March 17
similar to Example 1 and 2 but with an added capacity term related to cohesion) and
0.5, determine the factored bearing capacity of the foundation (i.e. – use Þ). Use Yw =
9.81 kN/m³. For simplicity, read the values of Nc, Ną, and Ny directly from the table on page
26 of the lecture slides use the highlighted columns. Also, determine the maximum
factored load for the column.
-
1.5 m
↑
1 m
3m x 2m
-
y = 17 kN/m³
Groundwater level
Ysat =
19.5 kN/m³
=
Explain the attached problem
Chapter 20 Solutions
Fundamentals of Geotechnical Engineering (MindTap Course List)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- Consider a continuous foundation of width B = 1.4 m on a sand deposit with c = 0, = 38, and = 17.5 kN/m3. The foundation is subjected to an eccentrically inclined load (see Figure 6.33). Given: load eccentricity e = 0.15 m, Df = 1 m, and load inclination = 18. Estimate the failure load Qu(ei) per unit length of the foundation a. for a partially compensated type of loading [Eq. (6.89)] b. for a reinforced type of loading [Eq. (6.90)]arrow_forwardA square shallow foundation (B × B) is planned to be constructed on a normality consolidated (NC) clay soil as shown in the below figure. The maximum acceptable settlement for the foundation is equal to 2.0 inches (5 cm), and the safety factor against bearing capacity is FS = 4. Determine the size of foundation. (Note: To simplify the calculations, ignore both the elastic settlement and secondary compression settlement. Also consider 4o'ave = 40'm) Q = 500 kN Ysat = 19.24 kN/m³ en = 0.8 C. = 0.25 p'= 0 c'= 25 kPa 2 m B ×B FS again Bearing Capacity = 4 Acceptable settlement = 2.0 inches 10 marrow_forwardA square shallow foundation (B × B) is planned to be constructed on a normality consolidated (NC) clay soil as shown in the below figure. The maximum acceptable settlement for the foundation is equal to 2.0 inches (5 cm), and the safety factor against bearing capacity is FS = 4. Determine the size of foundation. (Note: To simplify the calculations, ignore both the elastic settlement and secondary compression settlement. Also consider Ao'ave = 4o'm) Q = 500 kN Ysat = 19.24 kN/m³ eo = 0.8 C. = 0.25 p'= 0 c' = 25 kPa FS again Bearing Capacity = 4 Acceptable settlement = 2.0 inches 2 m В ХВ 10 marrow_forward
- Repeat Problem 11.1 based on limit state design, using the factors given in Table 11.4. 11.1 A continuous foundation is required in a soil where d = 10 kN/m?, = 26°, and y = 19.0 kN/m³. The depth of the footing will be 1.0 m. The dead load and the live load are 600 kN/m and 400 kN/m, respectively. Determine the required width for the foundation based on allowable stress design with FS = 3, using Eq. (6.10) and Table 6.1.arrow_forwardQuestion 1) For a shallow foundation measuring (1.7 m x 2.2 m) as shown below: , A. Estimate the elastic settlement proposed by Mayerhof. Then, B. Estimate the elastic settlement proposed by Bowles, if the water table rises 1.5 m. Then, Use yw=10 kN/m³ qnet= 1.2 MN/m2 G.S 1.5 m Sand Yd=16 kN/m³ Ysat= 17 kN/m3 %3D 2.5 m N60=52 V W.T. Silty Sand Ya=18 kN/m³ Ysat = 18.5 kN/m? N60=52 3.5 m Sand Ya=19 kN/m3 Ysat = 22 kN/m³ e, = 0.4, Ae=0.04 , o'= 194 kN/m2 5 m Cc= 0.3, Cs= 0.2 , Ca= 0.05 N60=60 CS Scanned with CamScannerarrow_forwardRefer to Figure 5.2 and consider a rectangular foundation. Given: B = 1.5 m, L = 2.5 m, Df = 1.2 m, H = 0.9 m, Φ' = 40º, c' = 0, and γ = 17 kN/m3. Using a factor of safety of 3, determine the gross allowable load the foundation can carry. Use Eq. (5.3).arrow_forward
- Solve question 4arrow_forwardUse Terzaghi's equation and Terzaghi's Tablearrow_forward2 ft 2 ft 24 ft 24 ft 24 ft Problem 4 B D E F G | 3 ft DL=100 kip DL=180 kip LL = 60 kịp LL = 120 kip DL=190 kip DL=110 ki • The plan of a mat foundation with column loads is shown in Figure 2. Use the rigid method to calculate the soil pressures at point A, B, C, D, E, F, G, H, , J, K, L, M and N. The size of the mat is 76 ft x 96 ft, all columns are 24 in x 24 in in section, and qlnet = 1.5 kip/ft². Verify that the soil pressures are less than the net allowable bearing capacity. LL = 120 kip LL = 70 ki 30 ft DL=180 kip DL=400 kip DL=200 kip LL = 250 kip LL = 120 kip DL=360 kip LL = 120 kip LL = 200 kip ex 30 ft DL-190 kip DL=500 kip LL = 130'kip LL = 240 kip DL=T10 kip DL=200 kip LL =300 kip LL =120 kip 30 ft DL=180 kip DL=120 kip LL =120 kip L =70 kip x' 3 ft IDL=120 kip DL=180 kip ILL =70 kip LL =120 kip J Figure 2: Plan of a Mat Foundation M L K Harrow_forward
- QUESTION #2 A rectangular foundation (B x 1.2B) has to be constructed as shown in Figure. Assume that y-17 kN/m³, Ysat = 20 kN/m³, D1-30°, D2-340, De 2 m, and Dw = 1 m. The gross allowable load with FS = 4 is 750 kN. Determine the size of the foundation by using general bearing capacity equation. Use: Meyerhof's bearing capacity and depth factors, DeBeer's shape factors. Qall 1.0 m 1.0 m G.W.L B x 1.2B Y = 17.0 kN/m² c=0 $1 = 30° Ysat = 20.0 kN/m² c = 0 kN/m² $2= 34°arrow_forwardThe shallow foundation shown below measures 2 m x 3 m and is subjected to a centric load and a moment. If eg = 0.2 m, ez = 0.3 m, and the depth of foundation is 1 m, determine the allowable load the foundation can carry. Use a factor of safety of 3. For the soil, we are told that the unit weight, y = 17 kn/m³, friction angle o' = 30°, and the cohesion, c' = 0. Qult B× L Qult eL Qult Qaln My Barrow_forwardThe applied load on a shallow square foundation makes an angle of 15° with the vertical. Given: B= 1.83 m, D;= 0.91 m, 7 = 18.08 kN/m³, ' = 25°, and d' = 23.96 kN/m?. Use FS= 4 and determine the gross allowable (vertical component) load. Use Eq. (16.9).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
CE 414 Lecture 02: LRFD Load Combinations (2021.01.22); Author: Gregory Michaelson;https://www.youtube.com/watch?v=6npEyQ-2T5w;License: Standard Youtube License