Fundamentals of Geotechnical Engineering (MindTap Course List)
5th Edition
ISBN: 9781305635180
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 20.2P
To determine
Find the required width of foundation based on allowable stress design.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
10. A flexible foundation is subjected to a uniformly distributed load of q-500 kN/m². Table 3
could be useful. Determine the increase in vertical stress, in kPa, Aoz at a depth of z=3m under
point F.
B
4m
3m
6m
E
10m
Table 10.3 Variation of I, with m and n
m
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0.1
0.0047 0.0092
0.0270
0.0279
0.2
0.0132
0.0092 0.0179 0.0259
0.0132 0.0259 0.0374
0.0222 0.0242
0.0435 0.0474
0.0629 0.0686
0.0258
0.0504 0.0528
0.0547
0.3
0.0731 0.0766
0.0794
0.4
0.1013
0.5
0.0198 0.0387
0.1202
0.6 0.0222 0.0435
0.7 0.0242 0.0474
0.0947 0.1069 0.1168
0.1247 0.1311
0.1361
0.1365 0.1436
0.1491
0.1537
0.1598
0.0168 0.0198
0.0328 0.0387
0.0474 0.0559
0.0168 0.0328 0.0474 0.0602 0.0711 0.0801 0.0873 0.0931 0.0977
0.0559 0.0711 0.0840 0.0947 0.1034 0.1104 0.1158
0.0629 0.0801
0.0686 0.0873 0.1034
0.8 0.0258 0.0504 0.0731 0.0931 0.1104
0.9 0.0270 0.0528 0.0766 0.0977 0.1158
0.0794 0.1013 0.1202
0.0832
0.1263
1.4
0.1300
1.6 0.0306 0.0599 0.0871 0.1114 0.1324
1.8 0.0309 0.0606…
S1
A 8 m layer of sand, of saturated unit weight 22 kN/m3, overlies a 6 m layer of clay, of saturated unit weight 27 kN/m3.
A foundation carrying 1200 KN load is to be founded on the soil layer. If the clay is normally consolidated and the
increase in effective pressure due to the foundation load at the center of clay is 27 kN/m2, Soil parameters are Cc =
0.25, eo = 1.0. Assume required data
•Draw the soil profile diagram in detail, mentioning all the soil properties with the foundation details. •Calculate the
consolidation settlement at the center of the clay layer.
Chapter 20 Solutions
Fundamentals of Geotechnical Engineering (MindTap Course List)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- A strip foundation with dimensions B has to be constructed on sandy soil. The foundation will be located at 1 m below the ground surface. The unit weight and the static angle of friction of the soil are 18 kN/m3 and 39o , respectively. The foundation may occasionally be subjected to a maximum dynamic load of 1800 kN increasing at a moderate rate. (i) Determine the size of the foundation using a safety factor of 3 by assuming the kh and kv values are 0.176 and 0, respectively. (ii) Determine the seismic settlement of the foundation if the design earthquake parameters are V = 0.4 m/sec and A = 0.32.arrow_forwardHelp!arrow_forwardH.W 2.pdf > H.Q 6 A flexible foundation measuring 1.5 m x 3 m is supported by a saturated clay. Given: Dr = 1.2 m, H = 3 m, Es (clay)= 600 kN/m2, and qo = 150 kN/m?. Determine the average elastic settlement of the foundation. H.O 7 Figure 7.3 shows a foundation of 10 ft x 6.25 ft resting on a sand deposit. The net load per unit area at the level of the foundation, qo, is 3000 Ib/ft?. For the sand, u, = 0.3, Es = 3200 Ib/in?, Df = 2.5 ft, and H = 32 ft. Assume that the foundation is rigid and determine the elastic settlement the foundation would undergo. H.O 8 Determine the net ultimate bearing capacity of mat foundations with the following characteristics: c, = 2500 Ib/ft, = 0, B = 20 ft, L = 30 ft, D, = 6.2 ft Foundation Engineering I H.W 2 H.O 9 A 20-m-long concrete pile is shown in Figure below. Estimate the ultimate point load Q, by a. Meyerhof's method b. Coyle and Castello's method Concrete pile 460 mm x 460 mm Loose sand 20m y I86 ANi Dee s H.O 10 A concrete pile 20 m long…arrow_forward
- Please solve this question. Q. No. 1: A foundation 4x4 m is located at a depth of 1 m in a layer of saturated clay 13 m thick. Characteristic Parameters for the clay are cu=100 kN/m2, u=0, c'=0, '=32o, Cc=0.36, eo=0.784, NCC, sat=21 kN/m3. Determine the design load of the foundation to ensure (a) a factor of safety with respect to shear failure of 3 using the traditional method, (b) consolidation settlement does not exceed 30 mm.arrow_forwardAn eccentrically loaded continuous foundation is shown in Figure P4.11. Determine the ultimate load Qu per unit length that the foundation can carry. Use the reduction factor method [Eq. (4.63)].arrow_forwardFor the rigid shallow foundation (2*4m) shown in Fig, calculate Immediate settlement the center of the foundation if . (net pressure qo = 100 kPa. Assume 0.3 X 2 m 0.5 m 3.5 m W.T Q=2000 kN 6 m-3 m y=22 kN/m² Ce=0.805 C₁ = 0.3 e=0.753 OCR = 1.4 G. s Dense Sand Y = 22 kN/m³ Silty Clay Silty Sand Y = 18 kN/m²arrow_forward
- A long foundation 0.6 m wide carries a line load of 100 kN/m. Calculate the vertical stressi ncrease at a point P, the coordinates of which are x = 2.5 m, and z = 1.5m, where the x-coordinate is normal to the line load from the central line of the footing. a. 3.05 kPa b. 1.69 kPa c. 4.08 kPa d. 5.12 kPa) e. 2.55 kPaarrow_forwardA concrete foundation 3 m wide, 9 m long and 0.75 m thick is to be founded at a depth of 1.5 m in a deep deposit of dense sand. The angle of shearing resistance of the sand is 35° and its unit weight is 19 kN/m². The unit weight of concrete is 24 kN/m³. Using the working stress design approach with a factor of safety, Fs = 3.0: Determine the safe bearing capacity of the sand deposit under the prevailing conditions. Determine the safe bearing capacity of the foundation if it is subjected to a vertical load of 2200 kN and a horizontal load of 500 kN. The resulting eccentricity is 0.3 m in the foundation width (B) direction QpCarrow_forwardA continuous foundation, supported by sand, has a width of 2 m and the depth of foundation is 1.5m. The known soil characteristics are as follows: ϕ’ = 40°, c’ = 0, and γ = 16.5 kN/m³. If the loadeccentricity is 0.2 m, determine the ultimate load per unit length of the foundation.(Ans: ???? =5,260??)arrow_forward
- A square shallow foundation (B × B) is planned to be constructed on a normality consolidated (NC) clay soil as shown in the below figure. The maximum acceptable settlement for the foundation is equal to 2.0 inches (5 cm), and the safety factor against bearing capacity is FS = 4. Determine the size of foundation. (Note: To simplify the calculations, ignore both the elastic settlement and secondary compression settlement. Also consider 4o'ave = 40'm) Q = 500 kN Ysat = 19.24 kN/m³ en = 0.8 C. = 0.25 p'= 0 c'= 25 kPa 2 m B ×B FS again Bearing Capacity = 4 Acceptable settlement = 2.0 inches 10 marrow_forwardA 2 m wide continuous foundation is placed at 1 m depth within a 1.5 m thick sand layer that is underlain by a weaker clay layer. The soil properties are as follows: Upper sand layer: unit weight = 18.0 kN/m2, d' = 38° Lower clay layer: unit weight = 19.0 kN/m, undrained shear strength = 25 kN/m2 Determine the maximum wall load that can be allowed on the foundation with FS = 3.arrow_forwardFor the embedded strip footing (infinitely long in the out-of-plane direction) shown below, the maximum vertical pressure that the soil can bear before failure is 100 kPa (i.e., qmax should not exceed 100 kPa). What is the maximum overall eccentricity of the foundation in mm before failure? (answer tolerance = 2%). Consider γconcrete = 25 kN/m3, γsoil = 18 kN/m3 and assume that the width of the embedded column is negligible, and the entire top of the foundation is covered with soil. Hint: for a strip footing, the calculations should be conducted assuming a 1-m long footing in the out-of-plane direction.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
CE 414 Lecture 02: LRFD Load Combinations (2021.01.22); Author: Gregory Michaelson;https://www.youtube.com/watch?v=6npEyQ-2T5w;License: Standard Youtube License