PHY 101L Module Two Lab Report
docx
keyboard_arrow_up
School
Southern New Hampshire University *
*We aren’t endorsed by this school
Course
101L
Subject
Mechanical Engineering
Date
Apr 3, 2024
Type
docx
Pages
9
Uploaded by CountWorld12585
PHY 101L Module Two Lab Report
Name: Sara Rigby
Date: 03/16/24
Complete this lab report by replacing the bracketed text with the relevant information.
Activity 1: Graph and Interpret Motion Data of a Moving Object
Activity 1 Table 1
Time (
x
-axis) (seconds)
Position (
y
-axis) (meters)
0
0
5
20
10
40
15
50
20
55
30
60
35
70
40
70
45
70
50
55
0
5
10
15
20
30
35
40
45
50
0
10
20
30
40
50
60
70
80
Activity 1 Graph 1
Time (sec)
Position (m)
Activity 1: Questions
1.
What is the average speed of the train during the time interval from 0 s to 10 s?
The average speed is calculated using speed = distance/time (speed = 40m/10s) therefore the average speed is 4 m/s.
2.
Using the equation: v
=
s
2
−
s
1
t
2
−
t
1
, calculate the average speed of the train as it moves from position x
= 50 m to x
= 60 m.
I calculated the average speed using the calculations: v= (60-50)/(30-15) to get the answer of 6.7 m/s.
3.
What does the slope of the line during each time interval represent?
The slope of line represents the change in velocity or speed of the train. 4.
From time t
= 35 s until t
= 45 s, the train is located at the same position. What is the slope of the line while the train is stationary?
The slope of the line is zero because there is no change in the position of the train for that time.
5.
Calculate the average speed of the train as it moves from position x
= 70 m to x
= 55 m. What does the sign of the average velocity during this time interval represent? I calculated the average speed using the calculations: v= (55-70)/(50-45); v=-1. The negative sign represents that the train is moving backwards compared to the initial movement or negative to positive on the plane.
6.
What is the displacement of the train from time t
= 0 s until t
= 50 s?
The displacement would be 55m, calculated by: 55m – 0 m = 55m. 7.
What is the total distance traveled by train from time t
= 0 s until t
= 50 s?
From t = 0 until t = 40s it covers a distance of 70 m
Then from t = 45s until t = 50s it covers another (70 - 55) = 15 m
So, total distance covered = 70 + 15 = 85 meters.
8.
What is the slope of the line during the time interval t
= 45 s to t
= 50 s?
The slope during this interval would be -3 caluclated by: (55-70)/(50-45)= (-15/5) = -3
9.
What does the sign of the slope in Question 8 represent in terms of the motion of the train?
The negative sign on the slop in question 8 demonstrates that the train is moving in the opposite direction from the initial movement.
10.
What is the average velocity of the train during the interval t
= 0 s to t
= 50 s?
The average velocity is 1.1m/s 11.
Does the train’s average velocity during the interval t = 0 s to t = 50 s provide a complete picture of the train’s motion during this time?
No, it does not provide a complete picture of the trains motion because it only reflects the average, no other information is available. Activity 2: Calculate the Velocity of a Moving Object
Activity 2 Table 1
Time (s)
Displacement (m)*
0.00
0.00
0.061
0.25
1.23
0.50
1.86
0.75
2.42
1.00
3.07
1.25
3.68
1.50
4.12
1.75
4.75
2.00
*Note that 0.25 m = 25 cm
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
0
0.5
1
1.5
2
2.5
Time vs Displacement of Battery Powered Car
Time(s)
Displacement (m)
(*0.25 m = 25cm)
Activity 2 Table 2
Time (s)
Velocity (m/s)
1
0.42
2
0.42
3
0.42
4
0.42
5
0.42
6
0.42
7
0.42
8
0.42
0
1
2
3
4
5
6
7
8
9
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
Time vs Velocity of Battery Powered Car
Velocity (m/s)
Time (s)
Activity 3: Graph the Motion of an Object Traveling Under Constant Acceleration
Activity 3 Table 1
Time (s)
Average Time (s)
Average Time
2
(s
2
)
Distance (m)
Trial 1 =0
0
0
0
Trial 2 = 0
Trial 3 = 0
Trial 1 =0.63
0.67
0.45
0.1
Trial 2 =0.66
Trial 3 =0.71
Trial 1 =0.89
0.94
0.88
0.2
Trial 2 =0.98
Trial 3 =0.94
Trial 1 =1.25
1.27
1.60
0.3
Trial 2 =1.28
Trial 3 =1.27
Trial 1 =1.36
1.35
1.81
0.4
Trial 2 =1.33
Trial 3 =1.35
Trial 1 =1.39
1.46
2.13
0.5
Trial 2 =1.51
Trial 3 =1.48
Trial 1 =1.77
1.77
3.12
0.6
Trial 2 =1.79
Trial 3 =1.74
Trial 1 =1.99
1.98
3.95
0.7
Trial 2 =2.01
Trial 3 =1.96
Trial 1 =2.05
2.05
4.20
0.8
Trial 2 =2.08
Trial 3 =2.02
*Note that 0.10 m = 10 cm
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0
0.5
1
1.5
2
2.5
Distance vs Average Time of Steel Sphere Distance (m)
*(0.10 m = 10cm)
Time (s)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
Displacement vs Average Time Squared of Steel Sphere
Displacement (m)
*(0.10m = 10cm)
Time (s)
Activity 3: Questions
1.
What is the shape of the graph when displacement is graphed against time?
The graph forms a generally upwards diagonal line.
2.
What is the shape of the graph when displacement is graphed against time squared?
The graph is a steeper upward diagonal line.
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
3.
What do the shapes of these graphs tell you about the relationship between distance and displacement for an object traveling at a constant acceleration?
The shapes of the graphs indicate that they share positive common trendline.
Activity 4: Predict the Time for a Steel Sphere to Roll Down an Incline
Activity 4 Table 1
Steel Sphere
Acrylic Sphere
A
Length of Track (cm)
(Step 1, use 80 cm)
80 cm
80 cm
B
Angle of Elevation (
) in Degrees (Step 1)
8
o
8
o
C
Calculated Time from s = 0 to s = 80 (Formula from Step 2)
1.60
1.70
D
Measured Time from s = 0 to s = 80
(Step 3 with stopwatch)
1.57
1.65
E
% Difference (Step 4)
1.89%
0.03%
Activity 4: Question
1.
What effect does the type of the sphere have on the time of the object to travel the measured distance? Explain.
T
he steel ball has a greater mass which creates faster acceleration due to gravity.
Activity 5: Demonstrate That a Sphere Rolling Down the Incline Is Moving Under Constant Acceleration
Activity 5: Questions
1.
Describe your observations of the sounds made as the sphere crosses the equally spaced rubber bands (procedure Step 4). (If the sounds are too fast to tell apart, lower the angle of the ramp.)
The sounds of the sphere hitting the equally spaced rubber bands were also equally spaced and rhythmic. When they were equally spaced the ball also were quicker because the ball was able to gain more acceleration compared to the unevenly spaced bands.
2.
Describe your observations of the sounds made as the sphere crosses the unequally spaced rubber bands (procedure Step 9)? (Use same angle as Step 4.)
When the bands were unevenly spaced it was not possible to tell when the sound would happen and not rhythmic at all. The ball also seemed to move slower between the bands because of a lack of acceleration between the closely placed bands.
3.
Explain the differences you observed, if any, between the sounds with equal spacing and sounds
with unequal spacing.
The sounds of the steel sphere were louder than the acrylic sphere.
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
Related Documents
Related Questions
permanent-magnet (pm) genera x
Bb Blackboard Learn
L STAND-ALONE.mp4 - Google Dri x
O Google Drive: ülwgjuó jc lis u
O ME526-WindEnergy-L25-Shuja.p x
O File | C:/Users/Administrator/Desktop/KFUPM%20Term%232/ME526/ME526-WindEnergy-L25-Shuja.pdf
(D Page view
A Read aloud
T) Add text
V Draw
Y Highlight
O Erase
17
of 26
Wind Farms
Consider the arrangement of three wind turbines in the following schematic in which wind
turbine C is in the wakes of turbines A and B.
Given the following:
- Uo = 12 m/s
A
-XẠC = 500 m
-XBC = 200 m
- z = 60 m
- Zo = 0.3 m
U.
-r, = 20 m
B
- CT = 0.88
Compute the total velocity deficit, udef(C) and the velocity at wind turbine C, namely Vc.
Activate Windows
Go to Settings to activate Windows.
Wind Farms (Example Answer)
5:43 PM
A 4)) ENG
5/3/2022
I!
arrow_forward
Hartley Electronics, Inc., in Nashville, producesshort runs of custom airwave scanners for the defense industry.The owner, Janet Hartley, has asked you to reduce inventory byintroducing a kanban system. After several hours of analysis, youdevelop the following data for scanner connectors used in onework cell. How many kanbans do you need for this connector?Daily demand 1,000 connectorsLead time 2 daysSafety stock 12 dayKanban size 500 connectors
arrow_forward
You are watching a live concert. You can also find the concert streaming live on Spotify. About how far must you stand from the stage in order for
the live concert and the live stream to be perfectly in sync?
HINT: Assume the radio signal (Spotify) has to travel all the way around the Earth.
circumference of the Earth (average): 40,041,000 m
Speed of sound: 345 m/s
Speed of light: 300,000,000 m/s
arrow_forward
HW_5_01P.pdf
PDF
File | C:/Users/Esther/Downloads/HW_5_01P.pdf
2 Would you like to set Microsoft Edge as your default browser?
Set as default
To be most productive with Microsoft Edge, finish setting up your
Complete setup
Maybe later
browser.
(D Page view A Read aloud V Draw
7 Highlight
2
of 3
Erase
5. Two cables are tied to the 2.0 kg ball shown below. The ball revolves in a horizontal
circle at constant speed. (Hint: You will need to use some geometry and properties of
triangles and their angles!)
60°
1.0 m
60°
© 2013 Pearson Education, Inc.
(a) For what speed is the tension the same in both cables?
(b) What is the tension?
2.
2:04 PM
O Type here to search
C A
2/9/2021
(8)
arrow_forward
Fast pls solve this question correctly in 5 min pls I will give u like for sure
Anu
arrow_forward
.com question/22816263
rch for an answer to any question...
it works
For parents For teachers
Honor code
16 nours agO• Chemistry Hign Scnoo1
You are currently in a stable orbit 9000 km
(1km=1000m) from the center of planet Proxima
Centauri B.
According to the calculations done by NASA, Planet Proxima Centauri B has
a mass of approximately 7.6x10^24kg.
Based on fuel consumption and expected material aboard the ship, your
colony ship lander has a mass of approximately 1.1x10^5 kg.
1. Using Newton's Law of Universal Gravitation, determine what the force of
gravity on your ship at that orbit be using the early measurements
2.Using Newton's second law determine the acceleration of your lander due
to gravity
3.Upon arrival, you measure the actual force of gravity to be 6x10^5 N,which
ic difforent from vourcalclated vauein cuection 1 ldentify 2cnocific
e to search
arrow_forward
please show work
answer is D
arrow_forward
I need help in the following MATLAB code. How do I add the code to answer the following question "Do you find more object detections in the image than the one that is cropped out? Explain how you would discriminate that from a dead pixel, a hot pixel, or a cosmic ray event."
fname = '00095337.fit';
fInfo = fitsinfo(fname);
img = fitsread(fname);
% Crop the image to show just the object:
img_cropped = img(1980:2030,1720:1780);
% Load the labeled image
img_labeled = imread('00095337_labeled_stars.png');
img_labeled = img_labeled(102:863,605:1363,:);
% Get rid of "hot" pixels (cosmic rays, disfunctional pixels)
max_acceptable_value = 1300;
img(img>max_acceptable_value) = max_acceptable_value;
% Plot the images
f1 = figure();
tgroup1 = uitabgroup('Parent',f1);
tab(1) = uitab('Parent', tgroup1, 'Title', 'Raw image');
ax(1) = axes('parent',tab(1));
imagesc(img)
axis equal
axis([0,size(img,2),0,size(img,1)]+0.5)
colormap(gray(256));
xlabel('x [px]')
ylabel('y [px]')…
arrow_forward
I want to run the SGP4 propagator for the ISS (ID = 25544) I got from spacetrack.org in MATLAB. I don't know where to get the inputs of the function. Where do I get the inFile and outFile that is mentioned in the following function.
% Purpose:
% This program shows how a Matlab program can call the Astrodynamic Standard libraries to propagate
% satellites to the requested time using SGP4 method.
%
% The program reads in user's input and output files. The program generates an
% ephemeris of position and velocity for each satellite read in. In addition, the program
% also generates other sets of orbital elements such as osculating Keplerian elements,
% mean Keplerian elements, latitude/longitude/height/pos, and nodal period/apogee/perigee/pos.
% Totally, the program prints results to five different output files.
%
%
% Usage: Sgp4Prop(inFile, outFile)
% inFile : File contains TLEs and 6P-Card (which controls start, stop times and step size)
% outFile : Base name for five output files
%…
arrow_forward
I need help solving this problem.
arrow_forward
For the Following question Graph all 4 : [I just need all 4 graphs and please explain and make clean solution]
Position vs time
Velocity vs time
Acceleration vs time
Force vs time
[For your convenience, I have solved the numerical solutions for the problem] (Please Look at the picture since it is much cleaner)
Question : A 550 kilogram mass initially at rest acted upon by a force of F(t) = 50et Newtons. What are the acceleration, speed, and displacement of the mass at t = 4 second ?
a =(50 e^t)/(550 ) [N/kg]
v = ∫_0^t▒(50 e^t )dt/(550 )= v_0 +(50 e^t-50)/550=((e^t- 1))/11
x = ∫_0^t▒(e^t- 1)dt/(11 )= x_0 +(e^t- t - 1)/(11 )
a(4s)=(50*54.6)/550= 4.96[m/s^2 ]
v(4s)=((e^4-1))/11= 4.87[m/s]
x(4s)=((e^4- 4 - 1))/11= 4.51 [m]
arrow_forward
K
mylabmastering.pearson.com
Chapter 12 - Lecture Notes.pptx: (MAE 272-01) (SP25) DY...
P Pearson MyLab and Mastering
Mastering Engineering
Back to my courses
Course Home
Scores
Course Home
arrow_forward
sample calculations
目
File Edit View Insert Format Data To
100%
$ % .0
.00 12:
fx |
A
1
Variable
Value
Units
diameter
height
m
4
volume
m^3
3
The image above shows a section of a Google sheet. What formula should be written in cell
B4 to calculate the volume of a cylinder with a diameter value in B2 and height in B3?
a) =0.25*PI()*B2^2 * B3
b) =PI()*B2^2 * B3
c) =pi*diameter^2 * height
d) =PI*B2^2 * B3
3 5
arrow_forward
Can someone please help me to answer all of the following questions thank you!!
arrow_forward
I need help coding in MATLAB. I have a .txt file containing the following data. That data is saved in a file named data.txt. I am wondering how I could extract all or some of that data into another .m file. Can you show me the code.
[[5.0018696581196584, 17.863820207570207, -13.086858974358975], [5.0018696581196584, 17.863820207570207, -13.086858974358975], [5.0018696581196584, 17.863820207570207, -13.086858974358975]]
arrow_forward
Don't Use Chat GPT Will Upvote And Give Solution In 30 Minutes Please
arrow_forward
Newton’s 2nd Law Lab (Modeling friendly lab)
Go to the PhET simulation Forces & Motion. https://phet.colorado.edu/sims/html/forcesandmotionbasics/latest/forcesandmotionbasics_en.html
Select “Acceleration”
Click to show Forces, Sum of Forces, Values, Mass, and Acceleration.
There are two experiments for this activity – make sure you include both.
Experiment #1: Acceleration vs. Force
In this lab you will determine the relationship between acceleration and net force.
Choose a mass at the beginning, and keep it constant for this entire experiment.
Set the friction to zero. This will make your Applied Force equal to the net force.
Record data for five different values of Applied Force.
Graph Acceleration vs. Net Force.
Graph this in Google sheets(you want a line graph - it should only have one line).
Make sure that Applied Force information is used as the x value
Make sure that Acceleration information is used as the y value
Add a trendline – see what fits best –…
arrow_forward
I need the isometric view with dimensions on the isometric graph paper in the image.
arrow_forward
Hello I’m trying to make the graph that you see in the picture, I’m trying the exact copy of that graph using this code but I’m having a hard time doing that. Could you change the code so that it looks like the graph that you see on the picture using MATLAB, please send the code when you are finished.
% Sample data for Diesel and Petrol cars
carPosition = linspace(1, 60, 50); % Assumed positions of cars
% Fix the random seed for reproducibility
rng(45);
% Assumed positions of cars
CO2Diesel = 25 + 5*cos(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Diesel
CO2Petrol = 20 + 5*sin(carPosition/60*2*pi) + randn(1, 50)*5; % Random data for Petrol
% Fit polynomial curves
pDiesel = polyfit(carPosition, CO2Diesel, 3);
pPetrol = polyfit(carPosition, CO2Petrol, 3);
% Generate points for best fit lines
fitDiesel = polyval(pDiesel, carPosition);
fitPetrol = polyval(pPetrol, carPosition);
% Plotting the data
figure; hold on;
scatter(carPosition, CO2Diesel, 'o', 'MarkerEdgeColor', [1 0.5…
arrow_forward
SEE MORE QUESTIONS
Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Related Questions
- permanent-magnet (pm) genera x Bb Blackboard Learn L STAND-ALONE.mp4 - Google Dri x O Google Drive: ülwgjuó jc lis u O ME526-WindEnergy-L25-Shuja.p x O File | C:/Users/Administrator/Desktop/KFUPM%20Term%232/ME526/ME526-WindEnergy-L25-Shuja.pdf (D Page view A Read aloud T) Add text V Draw Y Highlight O Erase 17 of 26 Wind Farms Consider the arrangement of three wind turbines in the following schematic in which wind turbine C is in the wakes of turbines A and B. Given the following: - Uo = 12 m/s A -XẠC = 500 m -XBC = 200 m - z = 60 m - Zo = 0.3 m U. -r, = 20 m B - CT = 0.88 Compute the total velocity deficit, udef(C) and the velocity at wind turbine C, namely Vc. Activate Windows Go to Settings to activate Windows. Wind Farms (Example Answer) 5:43 PM A 4)) ENG 5/3/2022 I!arrow_forwardHartley Electronics, Inc., in Nashville, producesshort runs of custom airwave scanners for the defense industry.The owner, Janet Hartley, has asked you to reduce inventory byintroducing a kanban system. After several hours of analysis, youdevelop the following data for scanner connectors used in onework cell. How many kanbans do you need for this connector?Daily demand 1,000 connectorsLead time 2 daysSafety stock 12 dayKanban size 500 connectorsarrow_forwardYou are watching a live concert. You can also find the concert streaming live on Spotify. About how far must you stand from the stage in order for the live concert and the live stream to be perfectly in sync? HINT: Assume the radio signal (Spotify) has to travel all the way around the Earth. circumference of the Earth (average): 40,041,000 m Speed of sound: 345 m/s Speed of light: 300,000,000 m/sarrow_forward
- HW_5_01P.pdf PDF File | C:/Users/Esther/Downloads/HW_5_01P.pdf 2 Would you like to set Microsoft Edge as your default browser? Set as default To be most productive with Microsoft Edge, finish setting up your Complete setup Maybe later browser. (D Page view A Read aloud V Draw 7 Highlight 2 of 3 Erase 5. Two cables are tied to the 2.0 kg ball shown below. The ball revolves in a horizontal circle at constant speed. (Hint: You will need to use some geometry and properties of triangles and their angles!) 60° 1.0 m 60° © 2013 Pearson Education, Inc. (a) For what speed is the tension the same in both cables? (b) What is the tension? 2. 2:04 PM O Type here to search C A 2/9/2021 (8)arrow_forwardFast pls solve this question correctly in 5 min pls I will give u like for sure Anuarrow_forward.com question/22816263 rch for an answer to any question... it works For parents For teachers Honor code 16 nours agO• Chemistry Hign Scnoo1 You are currently in a stable orbit 9000 km (1km=1000m) from the center of planet Proxima Centauri B. According to the calculations done by NASA, Planet Proxima Centauri B has a mass of approximately 7.6x10^24kg. Based on fuel consumption and expected material aboard the ship, your colony ship lander has a mass of approximately 1.1x10^5 kg. 1. Using Newton's Law of Universal Gravitation, determine what the force of gravity on your ship at that orbit be using the early measurements 2.Using Newton's second law determine the acceleration of your lander due to gravity 3.Upon arrival, you measure the actual force of gravity to be 6x10^5 N,which ic difforent from vourcalclated vauein cuection 1 ldentify 2cnocific e to searcharrow_forward
- please show work answer is Darrow_forwardI need help in the following MATLAB code. How do I add the code to answer the following question "Do you find more object detections in the image than the one that is cropped out? Explain how you would discriminate that from a dead pixel, a hot pixel, or a cosmic ray event." fname = '00095337.fit'; fInfo = fitsinfo(fname); img = fitsread(fname); % Crop the image to show just the object: img_cropped = img(1980:2030,1720:1780); % Load the labeled image img_labeled = imread('00095337_labeled_stars.png'); img_labeled = img_labeled(102:863,605:1363,:); % Get rid of "hot" pixels (cosmic rays, disfunctional pixels) max_acceptable_value = 1300; img(img>max_acceptable_value) = max_acceptable_value; % Plot the images f1 = figure(); tgroup1 = uitabgroup('Parent',f1); tab(1) = uitab('Parent', tgroup1, 'Title', 'Raw image'); ax(1) = axes('parent',tab(1)); imagesc(img) axis equal axis([0,size(img,2),0,size(img,1)]+0.5) colormap(gray(256)); xlabel('x [px]') ylabel('y [px]')…arrow_forwardI want to run the SGP4 propagator for the ISS (ID = 25544) I got from spacetrack.org in MATLAB. I don't know where to get the inputs of the function. Where do I get the inFile and outFile that is mentioned in the following function. % Purpose: % This program shows how a Matlab program can call the Astrodynamic Standard libraries to propagate % satellites to the requested time using SGP4 method. % % The program reads in user's input and output files. The program generates an % ephemeris of position and velocity for each satellite read in. In addition, the program % also generates other sets of orbital elements such as osculating Keplerian elements, % mean Keplerian elements, latitude/longitude/height/pos, and nodal period/apogee/perigee/pos. % Totally, the program prints results to five different output files. % % % Usage: Sgp4Prop(inFile, outFile) % inFile : File contains TLEs and 6P-Card (which controls start, stop times and step size) % outFile : Base name for five output files %…arrow_forward
- I need help solving this problem.arrow_forwardFor the Following question Graph all 4 : [I just need all 4 graphs and please explain and make clean solution] Position vs time Velocity vs time Acceleration vs time Force vs time [For your convenience, I have solved the numerical solutions for the problem] (Please Look at the picture since it is much cleaner) Question : A 550 kilogram mass initially at rest acted upon by a force of F(t) = 50et Newtons. What are the acceleration, speed, and displacement of the mass at t = 4 second ? a =(50 e^t)/(550 ) [N/kg] v = ∫_0^t▒(50 e^t )dt/(550 )= v_0 +(50 e^t-50)/550=((e^t- 1))/11 x = ∫_0^t▒(e^t- 1)dt/(11 )= x_0 +(e^t- t - 1)/(11 ) a(4s)=(50*54.6)/550= 4.96[m/s^2 ] v(4s)=((e^4-1))/11= 4.87[m/s] x(4s)=((e^4- 4 - 1))/11= 4.51 [m]arrow_forwardK mylabmastering.pearson.com Chapter 12 - Lecture Notes.pptx: (MAE 272-01) (SP25) DY... P Pearson MyLab and Mastering Mastering Engineering Back to my courses Course Home Scores Course Homearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY