![Preparing for your ACS examination in general chemistry](https://www.bartleby.com/isbn_cover_images/9780970804204/9780970804204_largeCoverImage.gif)
Preparing for your ACS examination in general chemistry
98th Edition
ISBN: 9780970804204
Author: Lucy T Eubanks
Publisher: ACS DIVCHED EXAMINATIONS INST.
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter MS, Problem 23PQ
Interpretation Introduction
Interpretation:
The correct order of increasing bond lengths of carbon-carbon bonds in given species has to be determined.
Concept Introduction:
The average distance between atomic nuclei of two bonded atoms is known as bond length. It is inversely related to strength of bond. Stronger the bond, shorter will be its bond length and vice-versa. Multiple bonds are stronger than single bonds. Triple bonds are stronger than double bonds. So triple bonds are the shortest, followed by double and single bonds.
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
Given the reaction: A(aq) + B(aq) ⇌ 2C(aq) + D(aq). 2.00 moles of each reactant were dissolved into 1.00 literof water. The reaction reached equilibrium, and at equilibrium the concentration of A was 1.60 M.A) Calculate the equilibrium concentrations for each substance.
B) Write the equilibrium constant expression.
C) Calculate the value for the equilibrium constant, Keq.
1) Draw the structures of D-lysine and L-lysine and assign R/S configuration
(showing your workings).
2) Draw the predominant ionisation forms of the free amino acid lysine, at pH 1.0,
8.0, and 11.0. pKa values: 2.2 (-COOH), 9.0 (α-NH3+), 10.5 (side-chain).
3) Calculate (showing your workings) the % of the different ionized species that
are present in a 1.00 M solution of L-proline at pH = 10.0. pKa values: 1.95 (-
COOH), 10.64 (α-NH3*).
4)
a) Draw the tripeptide Tyr-Pro-Lys once with a trans peptide bond between Tyr
and Pro and once with a cis peptide bond between Tyr and Pro.
b) The electrospray ionization mass spectrum (ESI-MS) of the tripeptide you
designed in part (a) shows peaks indicative of mono-protonation and di-
protonation of the tripeptide. At what values of m/z would these peaks be
expected (no fragmentation)? Briefly explain your answer (showing your
workings).
5) How could the sequence of Ala-Met-Thr be distinguished from that of Thr-Ala-
Met by tandem ESI-MS-MS?…
LABORATORY REPORT FORM
Part I. Determination of the Formula of a Known Hydrate
1. Mass of empty evaporating dish
3. Mass of hydrate
Using subtraction
or mass by difference,
find the mass of
the hydrate
76.96
-75.40
75.40g
76.968
1.568
01.56
76.90 g
2. Mass of evaporating dish + hydrate
4. Mass of evaporating dish + hydrate (after heating)
First 76.98 g
Third 76.66g
Second
Fourth (if necessary) 76.60g
5. Mass of anhydrate
6. Mass of water lost by the hydrate
7. Percent of water of hydration
(Show Calculations)
8. Moles of water
(Show Calculations)
mol
mass of water
=
MM of water (g/m)
9. Moles of anhydrate
(Show Calculations)
10. Ratio of moles of water to moles of anhydrate
11 F(Show Calculations)
11. Formula of hydrate
- Mass of water (g) x 100
% water hydration
g
g
%
Mass of hydrate (9) x IC
% = (Mass of hydrate- mass of an)
mass of hydrate (g)
% = (1.569-
× 100=
mol
1.569
mol Mol Mass of
anhydrate/MM
of anhydrate
12. What was the color of the hydrate?
blue
What was the color of the…
Chapter MS Solutions
Preparing for your ACS examination in general chemistry
Ch. MS - Prob. 1PQCh. MS - Prob. 2PQCh. MS - Prob. 3PQCh. MS - Prob. 4PQCh. MS - Prob. 5PQCh. MS - Prob. 6PQCh. MS - Prob. 7PQCh. MS - Prob. 8PQCh. MS - Prob. 9PQCh. MS - Prob. 10PQ
Ch. MS - Prob. 11PQCh. MS - Prob. 12PQCh. MS - Prob. 13PQCh. MS - Prob. 14PQCh. MS - Prob. 15PQCh. MS - Prob. 16PQCh. MS - Prob. 17PQCh. MS - Prob. 18PQCh. MS - Prob. 19PQCh. MS - Prob. 20PQCh. MS - Prob. 21PQCh. MS - Prob. 22PQCh. MS - Prob. 23PQCh. MS - Prob. 24PQCh. MS - Prob. 25PQCh. MS - Prob. 26PQCh. MS - Prob. 27PQCh. MS - Prob. 28PQCh. MS - Prob. 29PQCh. MS - Prob. 30PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- compared t-critical with t-calculated and 95% confidence interval to answer this questionarrow_forwardComparing two means. Horvat and co-workers used atomic absorption spectroscopy to determine the concentration of Hg in coal fly ash. Of particular interest to the authors was developing an appropriate procedure for digesting samples and releasing the Hg for analysis. As part of their study they tested several reagents for digesting samples. Their results using HNO3 and using a 1+3 mixture of HNO3 and HCl are shown here. All concentrations are given as ppb Hg sample. HNO3: 161, 165, 160, 167, 166 1+3 HNO3–HCl: 159, 145, 140, 147, 143, 156 Determine whether there is a significant difference between these methods at the 95% confidence interval.arrow_forwardComparison of experimental data to “known” value. Monna and co-workers used radioactive isotopes to date sediments from lakes and estuaries.21 To verify this method they analyzed a 208Po standard known to have an activity of 77.5 decays/min, obtaining the following results. 77.09, 75.37, 72.42, 76.84, 77.84, 76.69, 78.03, 74.96, 77.54, 76.09, 81.12, 75.75 Do the results differ from the expected results at the 95% confidence interval?arrow_forward
- Explain the difference between the propagated uncertainty and the standard deviation. Which number would you use to describe the uncertainty in the measurement? if the standard deviation is 0.01 and the propagated uncertainty is 0.03arrow_forwardPropagation of uncertainty. Find the absolute and percent relative uncertainty assuming the ±-values are random error. 7.65±0.04 + 5.28±0.02 – 1.12±0.01 85.6±0.9 × 50.2±0.7 ÷ 13.8±0.5 [4.88±0.07 + 3.22±0.05] / 1.53±0.02arrow_forwardExplain the difference between the propagated uncertainty and the standard deviation. Which number would you use to describe the uncertainty in the measurement?arrow_forward
- Circle the compound in each pair where the indicated bond vibrates at higher frequency. WHY IS THIS? Provide thorough explanation to tie topic.arrow_forwardHow can you distinguish between each pair of compounds below using IR? Cite a bond and frequency that can be used to distinguish. Provide thorough steps and explanation.arrow_forwardPropagation of uncertainty. Find the absolute and percent relative uncertainty assuming the ±-values are random error. 65±0.04 + 5.28±0.02 – 1.12±0.01 6±0.9 × 50.2±0.7 ÷ 13.8±0.5 [4.88±0.07 + 3.22±0.05] / 1.53±0.02arrow_forward
- Match to correct spectrum and explain the bonds and frequencies used to tell what spectrum connected to the given option. Thanks.arrow_forwardDraw the virtual orbitals for the planar and pyramidal forms of CH3 and for the linear and bent forms of CH2arrow_forwardQ2: Draw the molecules based on the provided nomenclatures below: (2R,3S)-2-chloro-3-methylpentane: (2S, 2R)-2-hydroxyl-3,6-dimethylheptane:arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY