(a)
Interpretation:
Balanced equation, complete ionic equation, and the net ionic equation has to be written for the given reaction.
Concept Introduction:
Complete ionic equation is the one that shows all the species that is present in the
Net ionic equation is the one that is obtained from the complete ionic equation by cancelling out the spectator ions.
(a)

Explanation of Solution
The chemical equation for the reaction is given as shown below;
Balancing magnesium atoms: In the reactant side, there is one magnesium atom while on the product side, there are three magnesium atoms. Adding coefficient
Balancing bromine atoms: In the above chemical equation, there are six bromine atoms on the left side of the equation, while in the product side, there is one bromine atom. Adding coefficient
Balancing sodium atoms: In the above chemical equation, there are three sodium atoms on the left side of the equation, while in the product side, there are six sodium atoms. Adding coefficient
Complete ionic equation:
The complete ionic equation can be written considering the ionic compounds in aqueous medium to be written into respective ions. Therefore, the complete ionic equation can be given as follows;
Net ionic equation:
The net ionic equation can be obtained from the complete ionic equation by cancelling out the spectator ions on both sides of the equation.
Thus, the net ionic equation can be given as shown below;
(b)
Interpretation:
Balanced equation, complete ionic equation, and the net ionic equation has to be written for the given reaction.
Concept Introduction:
Refer part (a).
(b)

Explanation of Solution
The chemical equation for the reaction is given as shown below;
Balancing iodine atoms: In the reactant side, there is one iodine atom while on the product side, there are two iodine atoms. Adding coefficient
Balancing cesium atoms: In the above chemical equation, there are two cesium atoms on the left side of the equation, while in the product side, there is one cesium atom. Adding coefficient
Complete ionic equation:
The complete ionic equation can be written considering the ionic compounds in aqueous medium to be written into respective ions. Therefore, the complete ionic equation can be given as follows;
Net ionic equation:
The net ionic equation can be obtained from the complete ionic equation by cancelling out the spectator ions on both sides of the equation.
Thus, the net ionic equation can be given as shown below;
(d)
Interpretation:
Balanced equation, complete ionic equation, and the net ionic equation has to be written for the given reaction.
Concept Introduction:
Refer part (a).
(d)

Explanation of Solution
The chemical equation for the reaction is given as shown below;
Balancing oxalate ions: In the reactant side, there are is one oxalate ion while on the product side, there are three oxalate ions. Adding coefficient
Balancing potassium atoms: In the above chemical equation, there are six potassium atoms on the left side of the equation, while in the product side, there is one potassium atom. Adding coefficient
Balancing cobalt atoms: In the above chemical equation, there is one cobalt atom on the left side of the equation, while in the product side, there are two cobalt atoms. Adding coefficient
Complete ionic equation:
The complete ionic equation can be written considering the ionic compounds in aqueous medium to be written into respective ions. Therefore, the complete ionic equation can be given as follows;
Net ionic equation:
The net ionic equation can be obtained from the complete ionic equation by cancelling out the spectator ions on both sides of the equation.
Thus, the net ionic equation can be given as shown below;
Want to see more full solutions like this?
Chapter F Solutions
ACHIEVE/CHEMICAL PRINCIPLES ACCESS 2TERM
- Synthesize 2-Ethyl-3-methyloxirane from dimethyl(propyl)sulfonium iodide using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize 2-Hydroxy-2-phenylacetonitrile from phenylmethanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forward
- Synthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardIf possible, please provide the formula of the compound 3,3-dimethylbut-2-enal.arrow_forwardSynthesize 1,4-dibromobenzene from acetanilide (N-phenylacetamide) using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forward
- Indicate the products obtained by mixing (3-oxo-3-phenylpropyl)triphenylphosphonium bromide with sodium hydride.arrow_forwardWe mix N-ethyl-2-hexanamine with excess methyl iodide and followed by heating with aqueous Ag2O. Indicate the major products obtained.arrow_forwardIndicate the products obtained by mixing acetophenone with iodine and NaOH.arrow_forward
- Indicate the products obtained by mixing 2-Propanone and ethyllithium and performing a subsequent acid hydrolysis.arrow_forwardIndicate the products obtained if (E)-2-butenal and 3-oxo-butanenitrile are mixed with sodium ethoxide in ethanol.arrow_forwardQuestion 3 (4 points), Draw a full arrow-pushing mechanism for the following reaction Please draw all structures clearly. Note that this intramolecular cyclization is analogous to the mechanism for halohydrin formation. COH Br + HBr Brarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





