Concept explainers
(a)
Interpretation:
Balanced equation, complete ionic equation, and the net ionic equation has to be written for the given reaction.
Concept Introduction:
Complete ionic equation is the one that shows all the species that is present in the
Net ionic equation is the one that is obtained from the complete ionic equation by cancelling out the spectator ions.
(a)

Explanation of Solution
The chemical equation for the reaction is given as shown below;
Balancing barium atoms: In the reactant side, there is one barium atom while on the product side, there are three barium atoms. Adding coefficient
Balancing bromine atoms: In the above chemical equation, there are six bromine atoms on the left side of the equation, while in the product side, there is one bromine atom. Adding coefficient
Balancing lithium atoms: In the above chemical equation, there are three lithium atoms on the left side of the equation, while in the product side, there are six lithium atoms. Adding coefficient
Complete ionic equation:
The complete ionic equation can be written considering the ionic compounds in aqueous medium to be written into respective ions. Therefore, the complete ionic equation can be given as follows;
Net ionic equation:
The net ionic equation can be obtained from the complete ionic equation by cancelling out the spectator ions on both sides of the equation.
Thus, the net ionic equation can be given as shown below;
(b)
Interpretation:
Balanced equation, complete ionic equation, and the net ionic equation has to be written for the given reaction.
Concept Introduction:
Refer part (a).
(b)

Explanation of Solution
The chemical equation for the reaction is given as shown below;
Balancing chlorine atoms: In the reactant side, there is one chlorine atom while on the product side, there are two chlorine atoms. Adding coefficient
Balancing nitrate ions: In the above chemical equation, there are two nitrate ions on the left side of the equation, while in the product side, there is one nitrate ion. Adding coefficient
Complete ionic equation:
The complete ionic equation can be written considering the ionic compounds in aqueous medium to be written into respective ions. Therefore, the complete ionic equation can be given as follows;
Net ionic equation:
The net ionic equation can be obtained from the complete ionic equation by cancelling out the spectator ions on both sides of the equation.
Thus, the net ionic equation can be given as shown below;
(d)
Interpretation:
Balanced equation, complete ionic equation, and the net ionic equation has to be written for the given reaction.
Concept Introduction:
Refer part (a).
(d)

Explanation of Solution
The chemical equation for the reaction is given as shown below;
Balancing hydroxide ions: In the reactant side, there are two hydroxide ion while on the product side, there are three hydroxide ions. Adding coefficient
Balancing nitrate ions: In the above chemical equation, there are three nitrate ions on the left side of the equation, while in the product side, there are two nitrate ions. Adding coefficient
Complete ionic equation:
The complete ionic equation can be written considering the ionic compounds in aqueous medium to be written into respective ions. Therefore, the complete ionic equation can be given as follows;
Net ionic equation:
The net ionic equation can be obtained from the complete ionic equation by cancelling out the spectator ions on both sides of the equation.
Thus, the net ionic equation can be given as shown below;
Want to see more full solutions like this?
Chapter F Solutions
CHEMICAL PRINCIPLES (LL) W/ACCESS
- Given a complex reaction with rate equation v = k1[A] + k2[A]2, what is the overall reaction order?arrow_forwardPlease draw the structure in the box that is consistent with all the spectral data and alphabetically label all of the equivalent protons in the structure (Ha, Hb, Hc....) in order to assign all the proton NMR peaks. The integrations are computer generated and approximate the number of equivalent protons. Molecular formula: C13H1802 14 13 12 11 10 11 (ppm) Structure with assigned H peaks 2.08 3.13arrow_forwardCHEMICAL KINETICS. One of the approximation methods for solving the rate equation is the steady-state approximation method. Explain what it consists of.arrow_forward
- CHEMICAL KINETICS. One of the approximation methods for solving the rate equation is the limiting or determining step approximation method. Explain what it consists of.arrow_forwardCHEMICAL KINETICS. Indicate the approximation methods for solving the rate equation.arrow_forwardTRANSMITTANCE เบบ Please identify the one structure below that is consistent with the 'H NMR and IR spectra shown and draw its complete structure in the box below with the protons alphabetically labeled as shown in the NMR spectrum and label the IR bands, including sp³C-H and sp2C-H stretch, indicated by the arrows. D 4000 OH LOH H₂C CH3 OH H₂C OCH3 CH3 OH 3000 2000 1500 HAVENUMBERI-11 1000 LOCH3 Draw your structure below and label its equivalent protons according to the peak labeling that is used in the NMR spectrum in order to assign the peaks. Integrals indicate number of equivalent protons. Splitting patterns are: s=singlet, d=doublet, m-multiplet 8 3Hb s m 1Hd s 3Hf m 2Hcd 2Had 1He 鄙视 m 7 7 6 5 4 3 22 500 T 1 0arrow_forward
- Relative Transmittance 0.995 0.99 0.985 0.98 Please draw the structure that is consistent with all the spectral data below in the box and alphabetically label the equivalent protons in the structure (Ha, Hb, Hc ....) in order to assign all the proton NMR peaks. Label the absorption bands in the IR spectrum indicated by the arrows. INFRARED SPECTRUM 1 0.975 3000 2000 Wavenumber (cm-1) 1000 Structure with assigned H peaks 1 3 180 160 140 120 100 f1 (ppm) 80 60 40 20 0 C-13 NMR note that there are 4 peaks between 120-140ppm Integral values equal the number of equivalent protons 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 fl (ppm)arrow_forwardCalculate the pH of 0.0025 M phenol.arrow_forwardIn the following reaction, the OH- acts as which of these? NO2-(aq) + H2O(l) ⇌ OH-(aq) + HNO2(aq)arrow_forward
- Using spectra attached, can the unknown be predicted? Draw the predicition. Please explain and provide steps. Molecular focrmula:C16H13ClOarrow_forwardCalculate the percent ionization for 0.0025 M phenol. Use the assumption to find [H3O+] first. K = 1.0 x 10-10arrow_forwardThe Ka for sodium dihydrogen phosphate is 6.32 x 10-8. Find the pH of a buffer made from 0.15 M H2PO4- and 0.25 M HPO42- .arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning





