Concept explainers
General first-order linear equations Consider the general first-order linear equation y′(t) + a(t)y(t) = f(t). This equation can be solved, in principle, by defining the integrating factor p(t) = exp(òa(t) dt). Here is how the integrating factor works. Multiply both sides of the equation by p (which is always positive) and show that the left side becomes an exact derivative. Therefore, the equation becomes
Now
45.
Want to see the full answer?
Check out a sample textbook solutionChapter D1 Solutions
Calculus: Early Transcendentals (2nd Edition)
Additional Math Textbook Solutions
Elementary Statistics
Intro Stats, Books a la Carte Edition (5th Edition)
Elementary Statistics (13th Edition)
Introductory Statistics
Pre-Algebra Student Edition
University Calculus: Early Transcendentals (4th Edition)
- A 200 gallon tank initially contains 100 gallons of water with 20 pounds of salt. A salt solution with 1/5 pound of salt per gallon is added to the tank at 10 gal/min, and the resulting mixture is drained out at 5 gal/min. Let Q(t) denote the quantity (lbs) of salt at time t (min). (a) Write a differential equation for Q(t) which is valid up until the point at which the tank overflows. Q' (t) = = (b) Find the quantity of salt in the tank as it's about to overflow. esc C ✓ % 1 1 a 2 W S # 3 e d $ 4 f 5 rt 99 6 y & 7 h O u * 00 8 O 1 9 1 Oarrow_forward5. The derivative is the gradient of the tangent to the function. In the case of a semi-circle, this means that the gradient vector (1, dy/d.r) should be orthogonal to the vector(arn, Y0). Verify this using the dot product and also by plotting both vectors (normalise the gradient vector).arrow_forward2. calculates the trajectory r(t) and stores the coordinates for time steps At as a nested list trajectory that contains [[xe, ye, ze], [x1, y1, z1], [x2, y2, z2], ...]. Start from time t = 0 and use a time step At = 0.01; the last data point in the trajectory should be the time when the oscillator "hits the ground", i.e., when z(t) ≤ 0; 3. stores the time for hitting the ground (i.e., the first time t when z(t) ≤ 0) in the variable t_contact and the corresponding positions in the variables x_contact, y_contact, and z_contact. Print t_contact = 1.430 X_contact = 0.755 y contact = -0.380 z_contact = (Output floating point numbers with 3 decimals using format (), e.g., "t_contact = {:.3f}" .format(t_contact).) The partial example output above is for ze = 10. 4. calculates the average x- and y-coordinates 1 y = Yi N where the x, y, are the x(t), y(t) in the trajectory and N is the number of data points that you calculated. Store the result as a list in the variable center = [x_avg, y_avg]…arrow_forward
- Please solve.arrow_forward(Conversion) An object’s polar moment of inertia, J, represents its resistance to twisting. For a cylinder, this moment of inertia is given by this formula: J=mr2/2+m( l 2 +3r 2 )/12misthecylindersmass( kg).listhecylinderslength(m).risthecylindersradius(m). Using this formula, determine the units for the cylinder’s polar moment of inertia.arrow_forwardFind the differential equation from the transfer of the function for the Giving following system and draw the block diagram of the system. 3 H = x(s) u(s) 0.5s + 1arrow_forward
- 7. Given the following truth table, write an algebraic expression for the given function and simplify the expression using a Karnaugh map. A F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1arrow_forward2 Simplify the following Boolean function, using four variables K-map. F(A, B, C, D) = E(2, 3, 6, 7, 12, 13, 14)arrow_forwardGiven the following function: f(x) = 2x For g(x) = Sf(x) dx, determine g(x).arrow_forward
- find the general solution to the following differential equation by using VARIATION OF PARAMETER method. y''+4y'+5y=e-2xsecxarrow_forwardWhat is the other canonical form of the giver equation? F(x.y.z) = E m (0,1,2,3,4,5,6,7)arrow_forward7. Solve with Python. A peristaltic pump delivers a unit flow (Q₁) of a highly viscous fluid. The network is depicted in the figure. Every pipe section has the same length and diameter. The mass and mechanical energy balance can be simplified to obtain the flows in every pipe. Solve the following system of equations to obtain the flow in every pipe using matrix inverse. S Q₂ 0₂ le 0₂ 90 Q₁+ 20-20-0 Qs+ 206-20-0 307-206-0arrow_forward
- C++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology PtrOperations Research : Applications and AlgorithmsComputer ScienceISBN:9780534380588Author:Wayne L. WinstonPublisher:Brooks Cole