Calculus: Early Transcendentals (2nd Edition)
2nd Edition
ISBN: 9780321947345
Author: William L. Briggs, Lyle Cochran, Bernard Gillett
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter D1.3, Problem 47E
(a)
To determine
To Find: The solution of the given initial value problem.
(b)
To determine
To find: The solution for
(c)
To determine
To find: The time taken to drain the tank.
(d)
To determine
To sketch: Graph for the solution
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A discharge factor is a ratio which compares the mass flow rate at the end of a channel or nozzle to an ideal channel or nozzle. The discharge factor for flow through an open channel of
parabolic cross-section is:
K = 1.2 [V16x +1+ In(V16x² +1+4x)]³
4x
where x is the ratio of the maximum water depth to breadth of the channel at the top of the water.
Determine the discharge factors for x in the range 0.45 to 0.90 in steps of 0.05.
Script e
C Reset
I MATLAB Docume
1 %Give values for x:
2
3 %Solve for K:
4
The electric flux density D at the point M (0,4,0) in the region about a uniform line charge of 1 nC/m lying along the z axis in free space is:
Select one:
a. None of the above
b. 0.6366 nC/m
c. 0.2387 nC/m
d. 0.039 nC/m
e. 0.1 nC/m
When purifying drinking water you can use a so-called membrane filtration.
In an experiment one wishes to examine the relationship between the
drop across a membrane and the flux (flow per area) through the membrane.
We observe the following 10 related values of pressure (x) and flux (y):
pressure
2
3
4
5
6
7
8
9.
10
Pressure (x) 1.02 2.08 2.89 4.01 5.32 5.83 7.26 7.96 9.11 9.99
Flux (y)
1.15 0.85 1.56 1.72 4.32
5.07 5.00 5.31 6.17 7.04
Copy this into R to avoid typing in the data:
D <- data.frame(
pressure=c(1.02,2.08,2.89,4.01,5.32,5.83,7.26,7.96,9.11,9.99),
flux=c(1.15,0.85,1.56,1.72,4.32,5.07,5.00,5.31,6.17,7.04)
Chapter D1 Solutions
Calculus: Early Transcendentals (2nd Edition)
Ch. D1.1 - Prob. 1ECh. D1.1 - Prob. 2ECh. D1.1 - Prob. 3ECh. D1.1 - If the general solution of a differential equation...Ch. D1.1 - Does the function y(t) = 2t satisfy the...Ch. D1.1 - Does the function y(t) = 6e3t satisfy the initial...Ch. D1.1 - Verifying general solutions Verify that the given...Ch. D1.1 - Verifying general solutions Verify that the given...Ch. D1.1 - Verifying general solutions Verify that the given...Ch. D1.1 - Verifying general solutions Verify that the given...
Ch. D1.1 - Verifying solutions of initial value problems...Ch. D1.1 - Verifying solutions of initial value problems...Ch. D1.1 - Verifying solutions of initial value problems...Ch. D1.1 - Verifying solutions of initial value problems...Ch. D1.1 - Finding general solutions Find the general...Ch. D1.1 - Finding general solutions Find the general...Ch. D1.1 - Finding general solutions Find the general...Ch. D1.1 - Finding general solutions Find the general...Ch. D1.1 - Finding general solutions Find the general...Ch. D1.1 - Finding general solutions Find the general...Ch. D1.1 - Finding general solutions Find the general...Ch. D1.1 - Prob. 22ECh. D1.1 - Solving initial value problems Solve the following...Ch. D1.1 - Solving initial value problems Solve the following...Ch. D1.1 - Solving initial value problems Solve the following...Ch. D1.1 - Solving initial value problems Solve the following...Ch. D1.1 - Solving initial value problems Solve the following...Ch. D1.1 - Solving initial value problems Solve the following...Ch. D1.1 - Motion in a gravitational field An object is fired...Ch. D1.1 - Prob. 30ECh. D1.1 - Prob. 31ECh. D1.1 - Prob. 32ECh. D1.1 - Prob. 33ECh. D1.1 - Prob. 34ECh. D1.1 - Explain why or why not Determine whether the...Ch. D1.1 - General solutions Find the general solution of the...Ch. D1.1 - General solutions Find the general solution of the...Ch. D1.1 - General solutions Find the general solution of the...Ch. D1.1 - General solutions Find the general solution of the...Ch. D1.1 - Solving initial value problems Find the solution...Ch. D1.1 - Solving initial value problems Find the solution...Ch. D1.1 - Solving initial value problems Find the solution...Ch. D1.1 - Solving initial value problems Find the solution...Ch. D1.1 - Verifying general solutions Verify that the given...Ch. D1.1 - Verifying general solutions Verify that the given...Ch. D1.1 - Verifying general solutions Verify that the given...Ch. D1.1 - Verifying general solutions Verify that the given...Ch. D1.1 - Verifying general solutions Verify that the given...Ch. D1.1 - Verifying general solutions Verify that the given...Ch. D1.1 - A second-order equation Consider the differential...Ch. D1.1 - Another second-order equation Consider the...Ch. D1.1 - Drug infusion The delivery of a drug (such as an...Ch. D1.1 - Logistic population growth Widely used models for...Ch. D1.1 - Free fall One possible model that describes the...Ch. D1.1 - Chemical rate equations The reaction of certain...Ch. D1.1 - Tumor growth The growth of cancer tumors may be...Ch. D1.2 - Explain how to sketch the direction field of the...Ch. D1.2 - Prob. 2ECh. D1.2 - Prob. 3ECh. D1.2 - Prob. 4ECh. D1.2 - Direction fields A differential equation and its...Ch. D1.2 - Prob. 6ECh. D1.2 - Identifying direction fields Which of the...Ch. D1.2 - Prob. 9ECh. D1.2 - Prob. 10ECh. D1.2 - Direction fields with technology Plot a direction...Ch. D1.2 - Sketching direction fields Use the window [2, 2] ...Ch. D1.2 - Sketching direction fields Use the window [2, 2] ...Ch. D1.2 - Sketching direction fields Use the window [2, 2] ...Ch. D1.2 - Sketching direction fields Use the window [2, 2] ...Ch. D1.2 - Sketching direction fields Use the window [2, 2] ...Ch. D1.2 - Increasing and decreasing solutions Consider the...Ch. D1.2 - Increasing and decreasing solutions Consider the...Ch. D1.2 - Increasing and decreasing solutions Consider the...Ch. D1.2 - Increasing and decreasing solutions Consider the...Ch. D1.2 - Logistic equations Consider the following logistic...Ch. D1.2 - Logistic equations Consider the following logistic...Ch. D1.2 - Logistic equations Consider the following logistic...Ch. D1.2 - Logistic equations Consider the following logistic...Ch. D1.2 - Two steps of Eulers method For the following...Ch. D1.2 - Two steps of Eulers method For the following...Ch. D1.2 - Two steps of Eulers method For the following...Ch. D1.2 - Two steps of Eulers method For the following...Ch. D1.2 - Errors in Eulers method Consider the following...Ch. D1.2 - Errors in Eulers method Consider the following...Ch. D1.2 - Prob. 31ECh. D1.2 - Prob. 32ECh. D1.2 - Prob. 33ECh. D1.2 - Prob. 34ECh. D1.2 - Prob. 35ECh. D1.2 - Prob. 36ECh. D1.2 - Prob. 37ECh. D1.2 - Equilibrium solutions A differential equation of...Ch. D1.2 - Prob. 39ECh. D1.2 - Prob. 40ECh. D1.2 - Equilibrium solutions A differential equation of...Ch. D1.2 - Equilibrium solutions A differential equation of...Ch. D1.2 - Direction field analysis Consider the first-order...Ch. D1.2 - Eulers method on more general grids Suppose the...Ch. D1.2 - Prob. 46ECh. D1.2 - Prob. 47ECh. D1.2 - Prob. 48ECh. D1.2 - Convergence of Eulers method Suppose Eulers method...Ch. D1.2 - Stability of Eulers method Consider the initial...Ch. D1.3 - What is a separable first-order differential...Ch. D1.3 - Is the equation t2y(t)=t+4y2 separable?Ch. D1.3 - Is the equation y(t)=2yt separable?Ch. D1.3 - Explain how to solve a separable differential...Ch. D1.3 - Solving separable equations Find the general...Ch. D1.3 - Solving separable equations Find the general...Ch. D1.3 - Solving separable equations Find the general...Ch. D1.3 - Solving separable equations Find the general...Ch. D1.3 - Solving separable equations Find the general...Ch. D1.3 - Solving separable equations Find the general...Ch. D1.3 - Solving separable equations Find the general...Ch. D1.3 - Solving separable equations Find the general...Ch. D1.3 - Solving separable equations Find the general...Ch. D1.3 - Solving separable equations Find the general...Ch. D1.3 - Solving separable equations Find the general...Ch. D1.3 - Solving separable equations Find the general...Ch. D1.3 - Prob. 17ECh. D1.3 - Solving initial value problems Determine whether...Ch. D1.3 - Solving initial value problems Determine whether...Ch. D1.3 - Solving initial value problems Determine whether...Ch. D1.3 - Solving initial value problems Determine whether...Ch. D1.3 - Solving initial value problems Determine whether...Ch. D1.3 - Prob. 23ECh. D1.3 - Prob. 24ECh. D1.3 - Solving initial value problems Determine whether...Ch. D1.3 - Solving initial value problems Determine whether...Ch. D1.3 - Prob. 27ECh. D1.3 - Solutions in implicit form Solve the following...Ch. D1.3 - Solutions in implicit form Solve the following...Ch. D1.3 - Solutions in implicit form Solve the following...Ch. D1.3 - Prob. 31ECh. D1.3 - Solutions in implicit form Solve the following...Ch. D1.3 - Logistic equation for a population A community of...Ch. D1.3 - Logistic equation for an epidemic When an infected...Ch. D1.3 - Explain why or why not Determine whether the...Ch. D1.3 - Prob. 36ECh. D1.3 - Prob. 37ECh. D1.3 - Prob. 38ECh. D1.3 - Solutions of separable equations Solve the...Ch. D1.3 - Prob. 40ECh. D1.3 - Implicit solutions for separable equations For the...Ch. D1.3 - Orthogonal trajectories Two curves are orthogonal...Ch. D1.3 - Prob. 43ECh. D1.3 - Applications 44.Logistic equation for spread of...Ch. D1.3 - Free fall An object in free fall may be modeled by...Ch. D1.3 - Prob. 46ECh. D1.3 - Prob. 47ECh. D1.3 - Chemical rate equations Let y(t) be the...Ch. D1.3 - Prob. 49ECh. D1.3 - Blowup in finite time Consider the initial value...Ch. D1.3 - Prob. 52ECh. D1.3 - Analysis of a separable equation Consider the...Ch. D1.4 - The general solution of a first-order linear...Ch. D1.4 - Prob. 2ECh. D1.4 - What is the general solution of the equation y'(t)...Ch. D1.4 - Prob. 4ECh. D1.4 - First-order linear equations Find the general...Ch. D1.4 - First-order linear equations Find the general...Ch. D1.4 - First-order linear equations Find the general...Ch. D1.4 - First-order linear equations Find the general...Ch. D1.4 - First-order linear equations Find the general...Ch. D1.4 - First-order linear equations Find the general...Ch. D1.4 - Initial value problems Solve the following initial...Ch. D1.4 - Initial value problems Solve the following initial...Ch. D1.4 - Initial value problems Solve the following initial...Ch. D1.4 - Initial value problems Solve the following initial...Ch. D1.4 - Initial value problems Solve the following initial...Ch. D1.4 - Initial value problems Solve the following initial...Ch. D1.4 - Stability of equilibrium points Find the...Ch. D1.4 - Stability of equilibrium points Find the...Ch. D1.4 - Stability of equilibrium points Find the...Ch. D1.4 - Stability of equilibrium points Find the...Ch. D1.4 - Stability of equilibrium points Find the...Ch. D1.4 - Stability of equilibrium points Find the...Ch. D1.4 - Loan problems The following initial value problems...Ch. D1.4 - Loan problems The following initial value problems...Ch. D1.4 - Loan problems The following initial value problems...Ch. D1.4 - Loan problems The following initial value problems...Ch. D1.4 - Newtons Law of Cooling Solve the differential...Ch. D1.4 - Newton's Law of Cooling Solve the differential...Ch. D1.4 - Newtons Law of Cooling Solve the differential...Ch. D1.4 - Prob. 30ECh. D1.4 - Explain why or why not Determine whether the...Ch. D1.4 - Prob. 32ECh. D1.4 - Special equations A special class of first-order...Ch. D1.4 - Prob. 34ECh. D1.4 - Special equations A special class of first-order...Ch. D1.4 - Prob. 36ECh. D1.4 - A bad loan Consider a loan repayment plan...Ch. D1.4 - Prob. 38ECh. D1.4 - Intravenous drug dosing The amount of drug in the...Ch. D1.4 - Optimal harvesting rate Let y(t) be the population...Ch. D1.4 - Endowment model An endowment is an investment...Ch. D1.4 - Prob. 43ECh. D1.4 - Prob. 44ECh. D1.4 - General first-order linear equations Consider the...Ch. D1.4 - Prob. 46ECh. D1.4 - Prob. 47ECh. D1.4 - General first-order linear equations Consider the...Ch. D1.5 - Explain how the growth rate function determines...Ch. D1.5 - Prob. 2ECh. D1.5 - Explain how the growth rate function can be...Ch. D1.5 - Prob. 4ECh. D1.5 - Is the differential equation that describes a...Ch. D1.5 - What are the assumptions underlying the...Ch. D1.5 - Describe the solution curves in a predator-prey...Ch. D1.5 - Prob. 8ECh. D1.5 - Solving logistic equations Write a logistic...Ch. D1.5 - Solving logistic equations Write a logistic...Ch. D1.5 - Designing logistic functions Use the method of...Ch. D1.5 - Designing logistic functions Use the method of...Ch. D1.5 - Prob. 19ECh. D1.5 - Prob. 20ECh. D1.5 - Solving the Gompertz equation Solve the Gompertz...Ch. D1.5 - Prob. 22ECh. D1.5 - Stirred tank reactions For each of the following...Ch. D1.5 - Prob. 24ECh. D1.5 - Prob. 25ECh. D1.5 - Prob. 26ECh. D1.5 - Prob. 31ECh. D1.5 - Growth rate functions a.Show that the logistic...Ch. D1.5 - Solution of the logistic equation Use separation...Ch. D1.5 - Properties of the Gompertz solution Verify that...Ch. D1.5 - Properties of stirred tank solutions a.Show that...Ch. D1.5 - Prob. 36ECh. D1.5 - RC circuit equation Suppose a battery with voltage...Ch. D1.5 - U.S. population projections According to the U.S....Ch. D1 - Explain why or why not Determine whether the...Ch. D1 - Prob. 2RECh. D1 - General solutions Use the method of your choice to...Ch. D1 - General solutions Use the method of your choice to...Ch. D1 - General solutions Use the method of your choice to...Ch. D1 - Prob. 6RECh. D1 - General solutions Use the method of your choice to...Ch. D1 - General solutions Use the method of your choice to...Ch. D1 - General solutions Use the method of your choice to...Ch. D1 - Prob. 10RECh. D1 - Solving initial value problems Use the method of...Ch. D1 - Prob. 12RECh. D1 - Solving initial value problems Use the method of...Ch. D1 - Prob. 14RECh. D1 - Solving initial value problems Use the method of...Ch. D1 - Solving initial value problems Use the method of...Ch. D1 - Prob. 17RECh. D1 - Solving initial value problems Use the method of...Ch. D1 - Direction fields Consider the direction field for...Ch. D1 - Prob. 20RECh. D1 - Eulers method Consider the initial value problem...Ch. D1 - Equilibrium solutions Find the equilibrium...Ch. D1 - Equilibrium solutions Find the equilibrium...Ch. D1 - Equilibrium solutions Find the equilibrium...Ch. D1 - Equilibrium solutions Find the equilibrium...Ch. D1 - Logistic growth The population of a rabbit...Ch. D1 - Logistic growth parameters A cell culture has a...Ch. D1 - Logistic growth in India The population of India...Ch. D1 - Stirred tank reaction A 100-L tank is filled with...Ch. D1 - Newtons Law of Cooling A cup of coffee is removed...Ch. D1 - A first-order equation Consider the equation...Ch. D1 - A second-order equation Consider the equation...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- A simple pendulum is formed of a rope of length L = 2.2 m and a bob of mass m. %3D When the pendulum makes an angle e 10° with the vertical, the speed of the %3D bob is 2 m/s. The angular speed, e', at the lowest position is equal to: (g = 10 m/s^2)arrow_forwardTwo small charged objects attract each other with a force F when separated by a distance d.If the charge on each object is reduced to one-fourth of its original value and the distance between them is reduced to d/2,the force becomes?arrow_forwardThe voltage V(1) (in V) and the current i(t) (in Amp) t seconds after closing the switch in the circuit shown are given by: R Vdt) = V(1– e/) i(t) = e, where t, = RC is the time constant. Consider the case where V = 24 V, R = 3800 2 and C = 4000 x 10-6 F. Determine the voltage and the current during the first 20 s after the switch is closed. Create a vector with values of times from 0 to 20 s with spacing of 2 s, and use it for calculating V(1) and i(t). Display the results in a three-column table where the values of time. voltage and current are displayed in the first, second, and third columns, respectively. (To display values in a Table, just create matrix and have its output displayed) Script ® C Reset I MATLAB Documentation 1 %Don't change the variable name 2 table =arrow_forward
- (Conversion) An object’s polar moment of inertia, J, represents its resistance to twisting. For a cylinder, this moment of inertia is given by this formula: J=mr2/2+m( l 2 +3r 2 )/12misthecylindersmass( kg).listhecylinderslength(m).risthecylindersradius(m). Using this formula, determine the units for the cylinder’s polar moment of inertia.arrow_forwardMinimize the following boolean function- F(A, B, C, D) = {m(0, 1, 3, 5, 7, 8, 9, 11, 13, 15)arrow_forwardThe position as a function of time (x(t), y(t)) of a projectile fired with a speed of vo at an angle a is given by x(t) = v₁cosα t y(t) = vo sina.t- 1 2812 Ꮎ 1 where g = 9.81 m/s². The polar coordinates of the projectile at time t are (r(t), 0(t)), where r(t) = √x(t)²+y(t)² and tane = y(1) Consider the case where vo x(t) and 0 = 70°. Determine r(t) and 0(t) for t = 1, 6, 11, 31s. = 162 m/sarrow_forward
- Bessel Function ZerosMatlab codearrow_forwardQ1/The pressure drop in pascals (Pa) for a fluid flowing in a pipe with a sudden decrease in diameter can be determined based on the loss of head equation given below: h = 24-11 2g Area A Area A Area A Where: V₂ is the velocity in position 2 (m/s), g: is acceleration due to gravity = 9.81 m/s², A₁ and A₂ are the cross-sectional areas of the tube in position 1 and 2 respectively. A==d² Where: d is the diameter (m). Write a program in a script file that calculates the head loss. When the script file is executed, it requests the user to input the velocity (V₂) in m/s and values of diameters (d, and d₂). The program displays the inputted value of v followed by a table with the values of diameters in the first and second columns and the corresponding values of h, in the third column. 2 2arrow_forwardThe van der Waal's equation of state is given as RT a v-b v² For sulfur dioxide at temperature, T, of 300 K and a pressure, P, of 1 atm, the constants are given as: R = 0.08206 L.atm/(mol.K) L2.mol² P = a = 6.7689 atm.L b=0.05679 L.mol™¹ a) Plot the function f(v)=0 the for volumes for the range of 0 to 40 L/mol using 0.5 increment. b) Identify the root in this plot (where the curve crosses x-axis). c) Use the MATLAB function (fzero) to solve the original f(v) function for the specific volume using the initial guess from part (c). d) Use the MATLAB function (roots) to solve the original f(v) function for the specific volume.arrow_forward
- The displacement of an oscillating spring can be described by x = A cos(wt) where x = displacement at time t, A = maximum displacement, w = angular frequency, which depends on the spring constant and the mass attached to the spring, and t = time. Find the displacement, x, with maximum displacement A of 4 cm, for times from 0 to 120 seconds with increments of 30 seconds, and angular frequencies from 0.4 to 0.6 radians/sec, with increments of 0.1 radians/sec. The displacement for all combinations of times and angular frequencies needs to be calculated. Use meshgrid. Display your results in a matrix with angular frequencies along the top row and times along the left column like so (you may put zero, 0, or NaN, in the upper left corner:arrow_forwardllowing function on the axes provided. f(x)={(-2 for x<=-4),(2x+1 for x>0):}arrow_forwardThis is not a graded assignment but a part of a review I'm studying, please do not reject the question, and thank you in advance for your solution!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- C++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology Ptr
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY