Concept explainers
Optimal harvesting rate Let y(t) be the population of a species that is being harvested, for t ≥ 0. Consider the harvesting model y′(t) = 0.008y – h, y(0) = y0, where h is the annual harvesting rate, y0 is the initial population of the species, and t is measured in years.
a. If y0 = 2000, what harvesting rate should he used to maintain a constant population of y = 2000, for t ≥ 0?
b. If the harvesting rate is h = 200/year, what initial population ensures a constant population?
Want to see the full answer?
Check out a sample textbook solutionChapter D1 Solutions
Calculus: Early Transcendentals (2nd Edition)
Additional Math Textbook Solutions
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
College Algebra with Modeling & Visualization (5th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Algebra and Trigonometry (6th Edition)
Elementary Statistics (13th Edition)
- Consider a maximization problem that is being solved by Simulated Annealing. Let the objective function value of the current state, s, be 1000. Let this state have 5 successors/neighbors: s1(950), s2(975), s3(1000), s4(1000), and s5(1050). The numbers in parentheses represent the corresponding objective function values. The current temperature is 100. The probability that the next state is: 1. s1 = [Select] 2. s2 = [Select] 3. s3 [Select] = 4. s4= [Select] [Select] 5. s5 0.778 0.121 0.156 0.2 0.606arrow_forwardA movie theater offers showings of a movie each day. A total of 500 people come to see the movie on a particular day. The theater is interested in the number of people who attended each of the six showings. 81 +82 +83 +84 +85 +86 = 500. How many possibilities are there for the tallies for each showing for that day if... a ... there are no restrictions? b ... none of the showings can be an empty theater? c...81 2, 82 ≥3, 83 4, 84 ≥5, 85 ≥6, 86 ≥ 7?arrow_forwardA particle of (mass= 4 g, charge%3 80 mC) moves in a region of space where the electric field is uniform and is given by E, =-2.5 N/C, E = E, = 0. If the velocity of the particle at t = 0 is given by Vz = 276 m/s, v, = v, = 0, what is the speed of the particle at t = 2 s? %3D (in m/s)arrow_forward
- At the beginning of the first day (day 1) after grape harvesting is completed, a grape grower has 8000 kg of grapes in storage. On day n, for n = 1, 2, . . . ,the grape grower sells 250n/(n + 1) kg of the grapes at the local market at the priceof $2.50 per kg. He leaves the rest of the grapes in storage where each day they dryout a little so that their weight decreases by 3%. Let wn be the weight (in kg) ofthe stored grapes at the beginning of day n for n ≥ 1 (before he takes any to themarket).(a) Find the value of wn for n = 2.(b) Find a recursive definition for wn. (You may find it helpful to draw a timeline.)(c) Let rn be the total revenue (in dollars) earned from the stored grapes from thebeginning of day 1 up to the beginning of day n for n ≥ 1. Find a recursiveformula for rn.(d) Write a MATLAB program to compute wn and rn for n = 1, 2, . . . , num wherenum is entered by the user, and display the values in three columns: n, wn, rnwith appropriate headings.Run the program for num =…arrow_forwardConstruct a graph to show how the time to complete the 10th car changes as the learning curve slope parameter is varied from 75% to 95%. The Mechanical Engineering department has a student team that is designing a formula car for national competition. The time required for the team to assemble the first car is 100 hours. Their improvement (or learning rate) is 0.8, which means that as output is doubled, their time to assemble a car is reduced by 20%. Use this information to determine, Solve, (a) the time it will take the team to assemble the 10th car. (b) the total time required to assemble the first 10 cars. (c) the estimated cumulative average assembly time for the first 10 cars. Solve by hand and by spreadsheet.arrow_forwardA circus is planning a tower act in which individuals stand on top of one another's shoulders. Each individual must be both shorter and lighter than the person below him or her for practical and aesthetic reasons. Write a way to determine the maximum feasible number of people in such a tower given the heights and weights of each individual in the circus.arrow_forward
- The utility function U(x, y) = x + y can be used to describe perfect substitutes preferences. For perfect substitutes, the demand for good x depends on its own price and on the price of y. If px > Py, the consumer only buys good y. If the px < py the consumer will specialize in good x, the demand will be the income divided by the price of x. If the prices are equal, the consumer is indifferent between buying x or y. Given this information: 1. Write a Python function which returns the demands of goods x, and y. The function should accommodate the income level, and the prices. 2. Plot the inverse demand curve for good x. Assume, py = 20, I = 100, and px is between 5 and 30.arrow_forwardPlease help step to step with Program R (CS) with explanation and final code for understanding thank you.arrow_forwardComputer Science AI questionarrow_forward
- Suppose the U.S. Census Bureau projects the population of the state to be 2.6 million in 2003 and 4.1 million in 2023. Assuming the population growth is linear, Use t years since 1993 and p the population of the state in millions. According to your linear model, what is the population of the state in 2032? (Round your final answer to two decimal places}.arrow_forwardA projectile is launched at an angle 0 and speed of V. The projectile's travel time ttravel> maximum travel distance xmax, and maximum height hmax are given by: Vo ttravel = 2-sin00, max g h. max V = 2 sine,cos 00 g hmax θα Xmax = 2 = 2 g sin²00 Consider the case where Vo = 600 ft/s_and_0 = 54°. Define V and 0 as MATLAB variables and calculate travel, xmax, and hmax (g = = 32.2 ft/s²). тах =arrow_forwardPlease explain all sabpart. I will really upvotearrow_forward
- Operations Research : Applications and AlgorithmsComputer ScienceISBN:9780534380588Author:Wayne L. WinstonPublisher:Brooks Cole