
Interpretation:
From the given options, the effect of temperature change for the following reaction has to be chosen.
Concept Introduction:
Le Chatelier’s principle:
If some forces applied, the system at equilibrium will get disrupted. This change in equilibrium can be due to the change in pressure or temperature. The change in reactant concentration can also disrupt the equilibrium. Over time, the forward and backward reaction become equal and will attain a new equilibrium. The equilibrium will shifts to right, if more products are formed and the system will shifts to left, if more reactants are formed.
The principle states that if some stress is applied to the system at equilibrium, the system will adjust itself in a direction which reduces the stress.
There are four types of stress or changes which affects the system:
Concentration Changes:
Addition of reactant or product or removal of reactant or product from a system at equilibrium will affects the equilibrium. If some reactant is added to a system at equilibrium, then the equilibrium will shifts to the product side, so that the added reactant get consumed. If product is added then the equilibrium will shift towards left side.
Example:
If
If
If
Temperature Changes:
Heat is one of the products in exothermic reaction and heat is used up in endothermic reaction.
Consider an exothermic reaction;
If heat is added up, then the reaction will shift to left so that the amount of heat will decrease.
Lowering the temperature will make the reaction to shift towards right.
Consider an endothermic reaction;
Increase in temperature will shift the reaction towards right. If heat is added up, then the reaction will shift towards right.
Pressure Changes:
Only the gaseous reactants and products get affected by the pressure change.
Consider the reaction:
3 moles of reactant gives 2 moles of product.
Increase in pressure will shift the reaction towards the side which have fewer molecules.

Trending nowThis is a popular solution!

Chapter 9 Solutions
General, Organic, and Biological Chemistry
- Part I. Problem solving. Include all necessary calculations 13 provide plots and graphs. Complexation wl diphenyl carbazide (OPC) in acidic media is another type of sensitive photometric method used for the analysis of aqueous. hexavalent chromium. At 540nm the cherry-red complex as a result of DPC reaction w/ chromium can be photometrically measured. at this wavelength. - a 25mL The UV-vis analysis for the determination of nexavalent chromium in ground water sample is given below. The experiment was based on external calibration method w/ each measurement sample prepared are as follows lab sample analysis contained the standard 100 ppb croy cor groundwater sample, volumes used as indicated below), 12.50 mL of 0.02 M H2Soy and 5.50 ml of 100 ppm DPC (wi water to adjust final volume to 25-ml). The main stripping method was square wave voltammetry, following the conditions set in the main ASV experiment. Standard 100 Volumetric Groundwater H2SO4 0.20 M, flask Sample, mL ppb CrO4*, 100…arrow_forwardplease helparrow_forwardPredict the products of the following reactions. Draw mechanism arrows for each step for a, b, and c. a.) HBr b.) HI H₂O H2SO4 d.) C12 HO H2SO4 1.) BH3 2.) H2O2, NaOHarrow_forward
- K for the following reaction is 0.11 at constant temperature. If the equilibrium concentration of HCl is 0.5 M, what is the equilibrium concentration of NH3. NH4CI(s) ⇌ NH3(g) + HCI(g)arrow_forwardplease help by Draw the following structures (Lewis or line-angle drawing).arrow_forwardplease helparrow_forward
- Consider the reaction: 2 A (aq) ⇌ B(aq) Given the following KC values and starting with the initial concentration of A = 4.00 M, complete ICE diagram(s)and find the equilibrium concentrations for A and B.A) KC = 4.00B) KC = 200C) KC = 8.00 x10-3arrow_forward5) Consider the reaction: Cl2 (g) + F2 (g) ⟷ 2 ClF (g) KP=? The partial pressure of 203 kPa for Cl2 and a partial pressure of 405 kPa for F2. Upon reaching equilibrium, thepartial pressure of ClF is 180 kPa. Calculate the equilibrium concentrations and then find the value for KP.arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- (9 Pts) In one of the two Rare Earth element rows of the periodic table, identify an exception tothe general ionization energy (IE) trend. For the two elements involved, answer the followingquestions. Be sure to cite sources for all physical data that you use.a. (2 pts) Identify the two elements and write their electronic configurations.b. (2 pts) Based on their configurations, propose a reason for the IE trend exception.c. (5 pts) Calculate effective nuclear charges for the last electron in each element and theAllred-Rochow electronegativity values for the two elements. Can any of these valuesexplain the IE trend exception? Explain how (not) – include a description of how IErelates to electronegativity.arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forwardDon't use AIarrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning



