Concept explainers
(a)
Interpretation:
The equilibrium constant expression for the given reaction has to be written.
Concept Introduction:
Law of
The equilibrium constant is the product of molar concentrations of the product which is raised to its
Equilibrium Constant:
Consider a reaction,
Forward
Backward reaction rate
At equilibrium, the rate of forward reaction = rate of backward reaction
(a)
Explanation of Solution
The given reaction is:
The equilibrium constant,
(b)
Interpretation:
The equilibrium constant expression for the given reaction has to be written.
Concept Introduction:
Law of Chemical Equilibrium:
The equilibrium constant is the product of molar concentrations of the product which is raised to its stoichiometric coefficients divided by the product of molar concentrations of the reactant which is raised to its stoichiometric coefficients.
Equilibrium Constant:
Consider a reaction,
Forward reaction rate
Backward reaction rate
At equilibrium, the rate of forward reaction = rate of backward reaction
(b)
Explanation of Solution
The given reaction is:
The equilibrium constant,
(c)
Interpretation:
The equilibrium constant expression for the given reaction has to be written.
Concept Introduction:
Law of Chemical Equilibrium:
The equilibrium constant is the product of molar concentrations of the product which is raised to its stoichiometric coefficients divided by the product of molar concentrations of the reactant which is raised to its stoichiometric coefficients.
Equilibrium Constant:
Consider a reaction,
Forward reaction rate
Backward reaction rate
At equilibrium, the rate of forward reaction = rate of backward reaction
(c)
Explanation of Solution
The given reaction is:
The equilibrium constant,
(d)
Interpretation:
The equilibrium constant expression for the given reaction has to be written.
Concept Introduction:
Law of Chemical Equilibrium:
The equilibrium constant is the product of molar concentrations of the product which is raised to its stoichiometric coefficients divided by the product of molar concentrations of the reactant which is raised to its stoichiometric coefficients.
Equilibrium Constant:
Consider a reaction,
Forward reaction rate
Backward reaction rate
At equilibrium, the rate of forward reaction = rate of backward reaction
(d)
Explanation of Solution
The given reaction is:
The equilibrium constant,
Want to see more full solutions like this?
Chapter 9 Solutions
General, Organic, and Biological Chemistry
- Write an equation for an equilibrium system that would lead to the following expressions (ac) for K. (a) K=(Pco)2 (PH2)5(PC2H6)(PH2O)2 (b) K=(PNH3)4 (PO2)5(PNO)4 (PH2O)6 (c) K=[ ClO3 ]2 [ Mn2+ ]2(Pcl2)[ MNO4 ]2 [ H+ ]4 ; liquid water is a productarrow_forwardConsider the system 4NH3(g)+3O2(g)2N2(g)+6H2O(l)H=1530.4kJ (a) How will the concentration of ammonia at equilibrium be affected by (1) removing O2(g)? (2) adding N2(g)? (3) adding water? (4) expanding the container? (5) increasing the temperature? (b) Which of the above factors will increase the value of K? Which will decrease it?arrow_forwardIn a solution with carbon tetrachloride as the solvent, the compound VCl4. undergoes dimerization: 2VCl4V2Cl8 When 6.6834 g VCl4. is dissolved in 100.0 g carbon tetrachloride, the freezing point is lowered by 5.97C. Calculate the value of the equilibrium constant for the dimerization of VCl4 at this temperature. (The density of the equilibrium mixture is 1.696 g/cm3, and Kf = 29.8C kg/mol for CCl4.)arrow_forward
- Show that the complete chemical equation, the total ionic equation, and the net ionic equation for the reaction represented by the equation KI(aq)+I2(aq)KI3(aq) give the same expression for the reaction quotient. KI3 is composed of the ions K+ and I3-.arrow_forwardWrite the expression for the equilibrium constant and calculate the partial pressure of CO2(g), given that Kp is 0.25 (at 427 C) for NaHCO3(s) NaOH(s) + CO2(g)arrow_forwardFor the reactionH2(g)+I2(g)2HI(g), consider two possibilities: (a) you mix 0.5 mole of each reactant. allow the system to come to equilibrium, and then add another mole of H2 and allow the system to reach equilibrium again. or (b) you mix 1.5 moles of H2 and 0.5 mole of I2 and allow the system to reach equilibrium. Will the final equilibrium mixture be different for the two procedures? Explain.arrow_forward
- Write equilibrium constant expressions for the following reactions. For gases, use either pressures or concentrations. (a) 2 H2O2(g) 2 H2O(g) + O2(g) (b) CO(g) + O2g CO2(g) (c) C(s) + CO2(g) 2 CO(g) (d) NiO(s) + CO(g) Ni(s) + CO2(g)arrow_forwardBecause calcium carbonate is a sink for CO32- in a lake, the student in Exercise 12.39 decides to go a step further and examine the equilibrium between carbonate ion and CaCOj. The reaction is Ca2+(aq) + COj2_(aq) ** CaCO,(s) The equilibrium constant for this reaction is 2.1 X 10*. If the initial calcium ion concentration is 0.02 AI and the carbonate concentration is 0.03 AI, what are the equilibrium concentrations of the ions? A student is simulating the carbonic acid—hydrogen carbonate equilibrium in a lake: H2COj(aq) H+(aq) + HCO}‘(aq) K = 4.4 X 10"7 She starts with 0.1000 AI carbonic acid. What are the concentrations of all species at equilibrium?arrow_forwardAt a certain temperature, K=0.29 for the decomposition of two moles of iodine trichloride, ICl3(s), to chlorine and iodine gases. The partial pressure of chlorine gas at equilibrium is three times that of iodine gas. What are the partial pressures of iodine and chlorine at equilibrium?arrow_forward
- Consider the system 4NH3(g)+3O2(g)2N2(g)+6H2O(l)H=1530.4kJ (a) How will the amount of ammonia at equilibrium be affected by 1. removing O2(g)? 2. adding N2(g)? 3. adding water? 4. expanding the container at constant pressure? 5. increasing the temperature? (b) Which of the above factors will increase the value of K? Which will decrease it?arrow_forwardWhat is Le Chteliers principle? Consider the reaction 2NOCI(g)2NO(g)+Cl2(g) If this reaction is at equilibrium. what happens when the following changes occur? a. NOCI(g) is added. b. NO(g) is added. c. NOCI(g) is removed. d. Cl2(g) is removed. e. The container volume is decreased. For each of these changes, what happens to the value of K for the reaction as equilibrium is reached again? Give an example of a reaction for which the addition or removal of one of the reactants or products has no effect on the equilibrium position. In general, how will the equilibrium position of a gas-phase reaction be affected if the volume of the reaction vessel changes? Are there reactions that will not have their equilibria shifted by a change in volume? Explain. Why does changing the pressure in a rigid container by adding an inert gas not shift the equilibrium position for a gas-phase reaction?arrow_forwardWrite a chemical equation for an equilibrium system that would lead to the following expressions (ad) for K. (a) K=(PH2S)2 (PO2)3(PSO2)2 (PH2O)2 (b) K=(PF2)1/2 (PI2)1/2PIF (c) K=[ Cl ]2(Pcl2)[ Br ]2 (d) K=(PNO)2 (PH2O)4 [ Cu2+ ]3[ NO3 ]2 [ H+ ]8arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning