Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780073398174
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
bartleby

Videos

Question
Book Icon
Chapter 9.12, Problem 170RP
To determine

The specific impulse of the jet engine.

Expert Solution & Answer
Check Mark

Answer to Problem 170RP

The specific impulse of the jet engine is 49ft/s.

Explanation of Solution

Draw the Ts diagram for pure jet engine as shown in Figure (1).

Thermodynamics: An Engineering Approach, Chapter 9.12, Problem 170RP

Consider that the aircraft is stationary, and the velocity of air moving towards the aircraft is V1=1200ft/s, the air will leave the diffuser with a negligible velocity (V20).

Diffuser :

Write the expression for the energy balance equation for the diffuser.

E˙inE˙out=ΔE˙system (I)

Here, the rate of energy entering the system is E˙in, rate of energy leaving the system is E˙out, and the rate of change in the energy of the system is ΔE˙system.

Write the temperature and pressure relation for the process 1-2.

P2=P1(T2T1)k/(k1) (II)

Here, the specific heat ratio of air is k, pressure at state 1 is P1, pressure at state 2 is P2, temperature at state 1 is T1 and temperature at state 2 is T2.

Compressor:

Write the pressure relation using the pressure ratio for the process 2-3.

P3=P4=(rp)(P2) (III)

Here, the pressure ratio is rp, pressure at state 3 is P3 and pressure at state 4 is P4.

Write the temperature and pressure relation for the process 2-3.

T3=T2(P3P2)(k1)/kT3=T2(rp(k1)/k) (IV)

Here, temperate at state 3 is T3.

Turbine:

Write the temperature relation for the compressor and turbine.

wcomp,in=wturb,outh3h2=h4h5cp(T3T2)=cp(T4T5)

T3T2=T4T5T5=T4T3+T2 (V)

Here, the specific heat at constant pressure is cp, enthalpy at state 2 is h2, enthalpy at state 3 is h3, enthalpy at state 4 is h4, enthalpy at state 5 is h5, work input to the compressor is wcomp,in, work output from turbine is wturb,out

, temperature at state 4 is T4 and temperature at state 5 is T5.

Nozzle:

Write the temperature and pressure relation for the isentropic process 4-6.

T6=T4(P6P4)(k1)/k (VI)

Here, pressure at state 6 is P6 and temperature at state 6 is T6.

Write the energy balance equation for the nozzle.

E˙inE˙out=ΔE˙system (VII)

Write the expression to calculate the specific impulse of the jet engine.

Fm˙=(VexitVinlet) (VIII)

Here, the thrust force produced by engine is F, mass flow rate of air is m˙, inlet velocity of air is Vinlet, and outlet velocity of air is Vexit.

Conclusion.

From Table A-1E, “Molar mass, gas constant, and critical-point properties”, obtain the

value of gas constant (R) for air substance as 0.3704psiaft3/lbmR.

From Table A-2Ea, “Ideal-gas specific heats of various common gases”, obtain the following values for air at room temperature.

k=1.4cp=0.24Btu/lbmR

The rate of change in the energy of the system (ΔE˙system) is zero for the steady state system.

Substitute 0 for ΔE˙system Equation (I).

E˙inE˙out=0E˙in=E˙outh1+V122=h2+V222

0=h2h1+V22V1220=cp(T2T1)V22V122 (IX)

Here, inlet velocity is V1 or Vinlet and velocity at state 2 is V2.

Substitute 0 for V2, 30°F for T1, 1200ft/s for V1, and 0.24Btu/lbmR for cp in Equation (IX).

0=0.24Btu/lbmR(T2(30°F))V22(1200ft/s)22T2=(30+460)R+(1200ft/s)2(2)(0.24Btu/lbmR)(1Btu/lbm25037ft2/s2)T2=609.8R

Substitute 10psia for P1, 609.8 R for T2, 30°F for T1, and 1.4 for k in Equation (II).

P2=(10psia)(609.8R30°F)1.4/1.41=(10psia)(609.8R(30+460)R)1.4/1.41=21.5psia

Substitute 9 for rp, and 21.5psia for P2 in Equation (III).

P3=P4=(9)(21.5)=193.5psia

Substitute 609.8 R for T2, 1.4 for k, and 9 for rp in Equation (IV).

T3=(609.8)(9)1.41/1.4=1142.4R

Substitute 700°F for T4, 1142.4 R for T3, and 609.8 R for T2 in Equation (V).

T5=((700°F)1142.4R+609.8R)=(700+460)R1142.4R+609.8R=627.4R

Substitute 700°F for T4, 1.4 for k, 10psia for P6, and 193.5psia for P4 in Equation (VI).

T6=(700°F)(10psia193.5psia)1.41/1.4=(700+460)R(10psia193.5psia)1.41/1.4=497.5R

The rate of change in the energy of the system (ΔE˙system) is zero for the steady state system.

Substitute 0 for ΔE˙system Equation (VII).

E˙in=E˙outh5+V522=h6+V6220=h6h5+V62V5220=cp(T6T5)V62V522 (X)

Here, velocity at stat 5 is V5, exit velocity is V6 or Vexit and temperate at state 6 is T6.

Since, V5=V2

Substitute 0 for V5, 627.4R for T5, 497.5R for T6, and 0.24Btu/lbmR for cp to find V6 in Equation (X).

0=0.24Btu/lbmR(497.5R627.4R)V6202V6=2(0.24Btu/lbmR)(627.4R497.5R)(25037ft2/s21Btu/lbm)V6=1249ft/sV6=Vexit=1249ft/s

Substitute 1200ft/s for Vinlet and 1249ft/s for Vexit in Equation (VIII).

Fm˙=(1249ft/s1200ft/s)=49ft/s

Thus, the specific impulse of the jet engine is 49ft/s.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
In an air-standard Brayton cycle the air enters the compressor at 0.1 MPa and 15°C. The pressure leaving the compressor is 1.0 MPa, and the maximum temperature in the cycle is 1100°C. Determine the pressure and temperature at each point in the cycle and the compressor work, turbine work, and cycle efficiency. For each of the control volumes analyzed, the model is ideal gas with constant specific heat, at 300 K, and each process is steady state with no kinetic or potential energy changes
In a gas turbine cycle with an air preheater, air enters the compressor at a temperature and pressure of 30 ° C and 1.5 bar, and exits the compressor at 220 ° C and 5.2 bar. After passing through the air preheater, it reaches a temperature of 395°C. and leaving the turbine at a temperature of 900 °C and S10 °C. Assuming there is no pressure loss at the preheater, calculate (a) the output per kg of air, (b) the cycle efficiency and (c) the driving work. compressor
TT5

Chapter 9 Solutions

Thermodynamics: An Engineering Approach

Ch. 9.12 - Prob. 11PCh. 9.12 - Prob. 12PCh. 9.12 - Prob. 13PCh. 9.12 - Prob. 15PCh. 9.12 - Prob. 16PCh. 9.12 - Prob. 17PCh. 9.12 - Prob. 18PCh. 9.12 - Repeat Prob. 919 using helium as the working...Ch. 9.12 - Consider a Carnot cycle executed in a closed...Ch. 9.12 - Prob. 21PCh. 9.12 - Prob. 22PCh. 9.12 - What four processes make up the ideal Otto cycle?Ch. 9.12 - Are the processes that make up the Otto cycle...Ch. 9.12 - How do the efficiencies of the ideal Otto cycle...Ch. 9.12 - How does the thermal efficiency of an ideal Otto...Ch. 9.12 - Prob. 27PCh. 9.12 - Why are high compression ratios not used in...Ch. 9.12 - An ideal Otto cycle with a specified compression...Ch. 9.12 - Prob. 30PCh. 9.12 - Prob. 31PCh. 9.12 - Prob. 32PCh. 9.12 - An ideal Otto cycle has a compression ratio of 8....Ch. 9.12 - Prob. 35PCh. 9.12 - Prob. 36PCh. 9.12 - Prob. 37PCh. 9.12 - An ideal Otto cycle with air as the working fluid...Ch. 9.12 - Repeat Prob. 940E using argon as the working...Ch. 9.12 - Prob. 40PCh. 9.12 - Prob. 41PCh. 9.12 - Prob. 42PCh. 9.12 - Prob. 43PCh. 9.12 - Prob. 44PCh. 9.12 - Prob. 45PCh. 9.12 - Prob. 46PCh. 9.12 - Prob. 47PCh. 9.12 - Prob. 48PCh. 9.12 - Prob. 49PCh. 9.12 - Prob. 50PCh. 9.12 - Prob. 51PCh. 9.12 - Prob. 52PCh. 9.12 - Prob. 53PCh. 9.12 - Prob. 54PCh. 9.12 - Repeat Prob. 957, but replace the isentropic...Ch. 9.12 - Prob. 57PCh. 9.12 - Prob. 58PCh. 9.12 - Prob. 59PCh. 9.12 - The compression ratio of an ideal dual cycle is...Ch. 9.12 - Repeat Prob. 962 using constant specific heats at...Ch. 9.12 - Prob. 63PCh. 9.12 - An air-standard cycle, called the dual cycle, with...Ch. 9.12 - Prob. 65PCh. 9.12 - Prob. 66PCh. 9.12 - Consider the ideal Otto, Stirling, and Carnot...Ch. 9.12 - Consider the ideal Diesel, Ericsson, and Carnot...Ch. 9.12 - An ideal Ericsson engine using helium as the...Ch. 9.12 - An ideal Stirling engine using helium as the...Ch. 9.12 - Prob. 71PCh. 9.12 - Prob. 72PCh. 9.12 - Prob. 73PCh. 9.12 - Prob. 74PCh. 9.12 - Prob. 75PCh. 9.12 - For fixed maximum and minimum temperatures, what...Ch. 9.12 - What is the back work ratio? What are typical back...Ch. 9.12 - Why are the back work ratios relatively high in...Ch. 9.12 - How do the inefficiencies of the turbine and the...Ch. 9.12 - A simple ideal Brayton cycle with air as the...Ch. 9.12 - A gas-turbine power plant operates on the simple...Ch. 9.12 - Prob. 82PCh. 9.12 - Prob. 83PCh. 9.12 - Prob. 85PCh. 9.12 - 9–86 Consider a simple Brayton cycle using air as...Ch. 9.12 - 9–87 Air is used as the working fluid in a simple...Ch. 9.12 - Air is used as the working fluid in a simple ideal...Ch. 9.12 - An aircraft engine operates on a simple ideal...Ch. 9.12 - 9–91E A gas-turbine power plant operates on a...Ch. 9.12 - Prob. 92PCh. 9.12 - 9–93 A gas-turbine power plant operates on the...Ch. 9.12 - A gas-turbine power plant operates on a modified...Ch. 9.12 - Prob. 95PCh. 9.12 - Prob. 96PCh. 9.12 - Prob. 97PCh. 9.12 - Prob. 98PCh. 9.12 - 9–99 A gas turbine for an automobile is designed...Ch. 9.12 - Prob. 100PCh. 9.12 - A gas-turbine engine operates on the ideal Brayton...Ch. 9.12 - An ideal regenerator (T3 = T5) is added to a...Ch. 9.12 - Prob. 103PCh. 9.12 - Prob. 104PCh. 9.12 - Prob. 106PCh. 9.12 - A Brayton cycle with regeneration using air as the...Ch. 9.12 - Prob. 108PCh. 9.12 - Prob. 109PCh. 9.12 - Prob. 110PCh. 9.12 - Prob. 111PCh. 9.12 - Prob. 112PCh. 9.12 - Prob. 113PCh. 9.12 - Prob. 114PCh. 9.12 - Prob. 115PCh. 9.12 - A simple ideal Brayton cycle without regeneration...Ch. 9.12 - A simple ideal Brayton cycle is modified to...Ch. 9.12 - Prob. 118PCh. 9.12 - Consider a regenerative gas-turbine power plant...Ch. 9.12 - Repeat Prob. 9123 using argon as the working...Ch. 9.12 - Consider an ideal gas-turbine cycle with two...Ch. 9.12 - Repeat Prob. 9125, assuming an efficiency of 86...Ch. 9.12 - Prob. 123PCh. 9.12 - Prob. 124PCh. 9.12 - Prob. 126PCh. 9.12 - Prob. 127PCh. 9.12 - Prob. 128PCh. 9.12 - Prob. 129PCh. 9.12 - A turbojet is flying with a velocity of 900 ft/s...Ch. 9.12 - Prob. 131PCh. 9.12 - A pure jet engine propels an aircraft at 240 m/s...Ch. 9.12 - A turbojet aircraft is flying with a velocity of...Ch. 9.12 - Prob. 134PCh. 9.12 - Consider an aircraft powered by a turbojet engine...Ch. 9.12 - 9–137 Air at 7°C enters a turbojet engine at a...Ch. 9.12 - Prob. 138PCh. 9.12 - Prob. 139PCh. 9.12 - 9–140E Determine the exergy destruction associated...Ch. 9.12 - Prob. 141PCh. 9.12 - Prob. 142PCh. 9.12 - Prob. 143PCh. 9.12 - Prob. 144PCh. 9.12 - Prob. 146PCh. 9.12 - A gas-turbine power plant operates on the...Ch. 9.12 - Prob. 149PCh. 9.12 - Prob. 150RPCh. 9.12 - Prob. 151RPCh. 9.12 - Prob. 152RPCh. 9.12 - Prob. 153RPCh. 9.12 - Prob. 154RPCh. 9.12 - Prob. 155RPCh. 9.12 - Prob. 156RPCh. 9.12 - Prob. 157RPCh. 9.12 - Prob. 159RPCh. 9.12 - Prob. 161RPCh. 9.12 - Prob. 162RPCh. 9.12 - Prob. 163RPCh. 9.12 - Consider a simple ideal Brayton cycle with air as...Ch. 9.12 - Prob. 165RPCh. 9.12 - Helium is used as the working fluid in a Brayton...Ch. 9.12 - Consider an ideal gas-turbine cycle with one stage...Ch. 9.12 - Prob. 169RPCh. 9.12 - Prob. 170RPCh. 9.12 - Prob. 173RPCh. 9.12 - Prob. 174RPCh. 9.12 - Prob. 184FEPCh. 9.12 - For specified limits for the maximum and minimum...Ch. 9.12 - Prob. 186FEPCh. 9.12 - Prob. 187FEPCh. 9.12 - Helium gas in an ideal Otto cycle is compressed...Ch. 9.12 - Prob. 189FEPCh. 9.12 - Prob. 190FEPCh. 9.12 - Consider an ideal Brayton cycle executed between...Ch. 9.12 - An ideal Brayton cycle has a net work output of...Ch. 9.12 - In an ideal Brayton cycle, air is compressed from...Ch. 9.12 - In an ideal Brayton cycle with regeneration, argon...Ch. 9.12 - In an ideal Brayton cycle with regeneration, air...Ch. 9.12 - Consider a gas turbine that has a pressure ratio...Ch. 9.12 - An ideal gas turbine cycle with many stages of...Ch. 9.12 - Prob. 198FEP
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY