
Concept explainers
a.
To evaluate the domain of the function
a.

Answer to Problem 79PFA
D. all real numbers
Explanation of Solution
Given information :
Quadratic function provided.
Options.
A.
B.
C.
D. all real numbers
The graph represented by the function is that of a parabola.
The domain of a quadratic function is
Option D. all real number; is the correct answer.
b.
To evaluate the range of the function
b.

Answer to Problem 79PFA
A.
Explanation of Solution
Given information :
Quadratic function provided.
Options.
A.
B.
C.
D. all real numbers
Formula used :
Formula to compute the x-coordinate of the vertex is
Calculation :
Since the coefficient of ‘a’ is positive, the curve of this function is upward facing and hence the function has a minimum value.
x -coordinate of the vertex is
Formula for axis of symmetry.
Putting the values of ‘a’ and ‘b’ .
Simplifying
Vertex can be found out by putting the value of x computed in the axis of symmetry in the original function. This will give a value of y , that will be the minimum.
Putting the value of
Simplifying the expression.
Thus, the minimum is at
Since x can take up any real values, the domain is
Since the range is the values of y, it can only take up values greater than or equal to the minimum. That is,
Therefore, option A.
c.
To find the vertex of the function
c.

Answer to Problem 79PFA
C.
Explanation of Solution
Given information :
Quadratic function provided.
Options.
A.
B.
C.
D.
Formula used :
Formula to compute the x-coordinate of the vertex is
Calculation :
Since the coefficient of ‘a’ is positive, the curve of this function is upward facing and hence the function has a minimum value.
x -coordinate of the vertex is
Formula for axis of symmetry.
Putting the values of ‘a’ and ‘b’ .
Simplifying
Vertex can be found out by putting the value of x computed in the axis of symmetry in the original function. This will give a value of y , that will be the minimum.
Putting the value of
Simplifying the expression.
Thus, the minimum is at
Hence the co-ordinates for the vertex are
Therefore, option C.
d.
To find the points that lie on the parabola
d.

Answer to Problem 79PFA
C.
Explanation of Solution
Given information :
Quadratic function provided.
Options.
A.
B.
C.
D.
E.
F.
G.
Formula used :
The graph of a quadratic equation (
Calculation :
Option A.
Substituting
Putting the value of
Simplifying the expression.
Therefore,
The same method is followed for all the options to check if the point lies on the parabola.
Options:
B.
D.
E.
These three points are found to be on the parabola by the method mentioned above.
Chapter 9 Solutions
Glencoe Algebra 1, Student Edition, 9780079039897, 0079039898, 2018
Additional Math Textbook Solutions
A First Course in Probability (10th Edition)
Introductory Statistics
Thinking Mathematically (6th Edition)
University Calculus: Early Transcendentals (4th Edition)
Elementary Statistics (13th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
- Write an equation for the function shown. You may assume all intercepts and asymptotes are on integers. The blue dashed lines are the asymptotes. 10 9- 8- 7 6 5 4- 3- 2 4 5 15-14-13-12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 1 1 2 3 -1 -2 -3 -4 1 -5 -6- -7 -8- -9 -10+ 60 7 8 9 10 11 12 13 14 15arrow_forwardUse the graph of the polynomial function of degree 5 to identify zeros and multiplicity. Order your zeros from least to greatest. -6 3 6+ 5 4 3 2 1 2 -1 -2 -3 -4 -5 3 4 6 Zero at with multiplicity Zero at with multiplicity Zero at with multiplicityarrow_forwardUse the graph to identify zeros and multiplicity. Order your zeros from least to greatest. 6 5 4 -6-5-4-3-2 3 21 2 1 2 4 5 ૪ 345 Zero at with multiplicity Zero at with multiplicity Zero at with multiplicity Zero at with multiplicity པ་arrow_forward
- Use the graph to write the formula for a polynomial function of least degree. -5 + 4 3 ♡ 2 12 1 f(x) -1 -1 f(x) 2 3. + -3 12 -5+ + xarrow_forwardUse the graph to identify zeros and multiplicity. Order your zeros from least to greatest. 6 -6-5-4-3-2-1 -1 -2 3 -4 4 5 6 a Zero at with multiplicity Zero at with multiplicity Zero at with multiplicity Zero at with multiplicityarrow_forwardUse the graph to write the formula for a polynomial function of least degree. 5 4 3 -5 -x 1 f(x) -5 -4 -1 1 2 3 4 -1 -2 -3 -4 -5 f(x) =arrow_forward
- Write the equation for the graphed function. -8 ง -6-5 + 5 4 3 2 1 -3 -2 -1 -1 -2 4 5 6 6 -8- f(x) 7 8arrow_forwardWrite the equation for the graphed function. 8+ 7 -8 ง A -6-5 + 6 5 4 3 -2 -1 2 1 -1 3 2 3 + -2 -3 -4 -5 16 -7 -8+ f(x) = ST 0 7 8arrow_forwardThe following is the graph of the function f. 48- 44 40 36 32 28 24 20 16 12 8 4 -4 -3 -1 -4 -8 -12 -16 -20 -24 -28 -32 -36 -40 -44 -48+ Estimate the intervals where f is increasing or decreasing. Increasing: Decreasing: Estimate the point at which the graph of ƒ has a local maximum or a local minimum. Local maximum: Local minimum:arrow_forward
- For the following exercise, find the domain and range of the function below using interval notation. 10+ 9 8 7 6 5 4 3 2 1 10 -9 -8 -7 -6 -5 -4 -3 -2 -1 2 34 5 6 7 8 9 10 -1 -2 Domain: Range: -4 -5 -6 -7- 67% 9 -8 -9 -10-arrow_forward1. Given that h(t) = -5t + 3 t². A tangent line H to the function h(t) passes through the point (-7, B). a. Determine the value of ẞ. b. Derive an expression to represent the gradient of the tangent line H that is passing through the point (-7. B). c. Hence, derive the straight-line equation of the tangent line H 2. The function p(q) has factors of (q − 3) (2q + 5) (q) for the interval -3≤ q≤ 4. a. Derive an expression for the function p(q). b. Determine the stationary point(s) of the function p(q) c. Classify the stationary point(s) from part b. above. d. Identify the local maximum of the function p(q). e. Identify the global minimum for the function p(q). 3. Given that m(q) = -3e-24-169 +9 (-39-7)(-In (30-755 a. State all the possible rules that should be used to differentiate the function m(q). Next to the rule that has been stated, write the expression(s) of the function m(q) for which that rule will be applied. b. Determine the derivative of m(q)arrow_forwardSafari File Edit View History Bookmarks Window Help Ο Ω OV O mA 0 mW ర Fri Apr 4 1 222 tv A F9 F10 DII 4 F6 F7 F8 7 29 8 00 W E R T Y U S D பட 9 O G H J K E F11 + 11 F12 O P } [arrow_forward
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education





