In research in cardiology and exercise physiology, it is often important to know the mass of blood pumped by a person’s heart in one stroke. This information can be obtained by means of a ballistocardiograph . The instrument works as follows. The subject lies on a horizontal pallet floating on a film of air. Friction on the pallet is negligible. Initially, the momentum of the system is zero. When the heart beats, it expels a mass m of blood into the aorta with speed υ, and the body and platform move in the opposite direction with speed V The blood velocity can be determined independently (e.g., by observing the Doppler shift of ultrasound). Assume that it is 50.0 cm/s in one typical trial. The mass of the subject plus the pallet is 54.0 kg. The pallet moves 6.00 × 10 -5 m in 0.160 s after one heartbeat. Calculate the mass of blood that leaves the heart. Assume that the mass of blood is negligible compared with the total mass of the person. (This simplified example illustrates the principle of ballistocardiography, but in practice a more sophisticated model of heart function is used.)
In research in cardiology and exercise physiology, it is often important to know the mass of blood pumped by a person’s heart in one stroke. This information can be obtained by means of a ballistocardiograph . The instrument works as follows. The subject lies on a horizontal pallet floating on a film of air. Friction on the pallet is negligible. Initially, the momentum of the system is zero. When the heart beats, it expels a mass m of blood into the aorta with speed υ, and the body and platform move in the opposite direction with speed V The blood velocity can be determined independently (e.g., by observing the Doppler shift of ultrasound). Assume that it is 50.0 cm/s in one typical trial. The mass of the subject plus the pallet is 54.0 kg. The pallet moves 6.00 × 10 -5 m in 0.160 s after one heartbeat. Calculate the mass of blood that leaves the heart. Assume that the mass of blood is negligible compared with the total mass of the person. (This simplified example illustrates the principle of ballistocardiography, but in practice a more sophisticated model of heart function is used.)
Solution Summary: The author calculates the mass of blood that leaves the heart by calculating the velocity of the pallet.
In research in cardiology and exercise physiology, it is often important to know the mass of blood pumped by a person’s heart in one stroke. This information can be obtained by means of a ballistocardiograph. The instrument works as follows. The subject lies on a horizontal pallet floating on a film of air. Friction on the pallet is negligible. Initially, the momentum of the system is zero. When the heart beats, it expels a mass m of blood into the aorta with speed υ, and the body and platform move in the opposite direction with speed V The blood velocity can be determined independently (e.g., by observing the Doppler shift of ultrasound). Assume that it is 50.0 cm/s in one typical trial. The mass of the subject plus the pallet is 54.0 kg. The pallet moves 6.00 × 10-5 m in 0.160 s after one heartbeat. Calculate the mass of blood that leaves the heart. Assume that the mass of blood is negligible compared with the total mass of the person. (This simplified example illustrates the principle of ballistocardiography, but in practice a more sophisticated model of heart function is used.)
Part C
Find the height yi
from which the rock was launched.
Express your answer in meters to three significant figures.
Learning Goal:
To practice Problem-Solving Strategy 4.1 for projectile motion problems.
A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration.
PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems
MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model.
VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ.
SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…
Phys 25
Chapter 9 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.