A 2.00-g particle moving at 8.00 m/s makes a perfectly elastic head-on collision with a resting 1.00-g object. (a) Find the speed of each particle after the collision. (b) Find the speed of each particle after the collision if the stationary particle has a mass of 10.0 g. (c) Find the final kinetic energy of the incident 2.00-g particle in the situations described in parts (a) and (b). In which case does the incident particle lose more kinetic energy?
(a)
The velocity of each particle after collision.
Answer to Problem 9.91AP
The velocity of incident particle after collision is
Explanation of Solution
Given info: The mass of incident particle is
Write the condition for velocity of incident particle after collision.
Here,
The initial velocity of the target particle is
Substitute
Thus, the value of
Write the condition for velocity of target particle after collision.
Substitute
Thus, the value of
Conclusion:
Therefore, the velocity of incident particle after collision is
(b)
The velocity of each particle after collision.
Answer to Problem 9.91AP
The velocity of incident particle after collision is
Explanation of Solution
Given info: The mass of incident particle is
Write the condition for velocity of incident particle after collision.
Here,
The initial velocity of the target particle is
Substitute
Thus, the value of
Write the condition for velocity of target particle after collision.
Substitute
Thus, the value of
Conclusion:
Therefore, the velocity of incident particle after collision is
(c)
The kinetic energy of the incident particle in the situation described in part (a) and (b) and the case in which more kinetic energy is lost.
Answer to Problem 9.91AP
The kinetic energy of the incident particle in the situation described in part (a) is
Explanation of Solution
Given info: The mass of incident particle is
Case (a);
From part (a), the velocity of incident particle after collision is
Write the expression for final kinetic energy of incident particle for case (a).
Here,
Substitute
Thus, the value of
Case (b);
From part (b), the velocity of incident particle after collision is
Write the expression for final kinetic energy of incident particle case (b).
Here,
Substitute
Thus, the value of
Since, the incident kinetic energy is almost same in both cases.
The incident particle loses more kinetic energy in case (a) where the mass of the incident particle is
Conclusion:
Therefore, the kinetic energy of the incident particle in the situation described in part (a) is
Want to see more full solutions like this?
Chapter 9 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- No chatgpt pls will upvotearrow_forwardsuggest a reason ultrasound cleaning is better than cleaning by hand?arrow_forwardCheckpoint 4 The figure shows four orientations of an electric di- pole in an external electric field. Rank the orienta- tions according to (a) the magnitude of the torque on the dipole and (b) the potential energy of the di- pole, greatest first. (1) (2) E (4)arrow_forward
- What is integrated science. What is fractional distillation What is simple distillationarrow_forward19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forwardair is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forward
- No chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill