Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 9.26P
Four railroad cars, each of mass 2.50 × 104 kg, are coupled together and coasting along horizontal tracks at speed vi toward the south. A very strong but foolish movie actor, riding on the second car, uncouples the front car and gives it a big push, increasing its speed to 4.00 m/s southward. The remaining three cars continue moving south, now at 2.0 m/s. (a) Find the initial speed of the four cars. (b) By how much did the potential energy within the body of the actor change? (c) State the relationship between the process described here and the process in Problem 13.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
You're driving along at 25m/s with your aunt's valuable antiques in the back of your pickup truck
when suddenly you see a giant hole in the road 55 m ahead of you. Fortunately, your foot is
right beside the brake and your reaction time is zero! If the coefficients of friction are μs =0.6
and uk =0.3, how much time does it take you to stop if you don't want the antiques to slide and
be damaged?
While driving to work one day, I was holding my coffee mug in my left
hand while changing the radio station with my right hand. Then my cell
phone rang, so I placed the mug on the flat part of my dashboard.
Then, believe it or not, a deer ran out of the woods and onto the road
right in front of me. Fortunately, my reaction time was zero, and I was
able to stop from a speed of 17 m/s in a mere 50 m, just barely
avoiding the deer, without the coffee mug sliding. The mug (with
coffee) had a mass of 550 g, and the mass of the deer was 150 kg.
Part A
What is the minimum possible value of the coefficient of static friction between the mug and the dashboard?
Hg =
Dae-hyun, a man of mass 72 kg, steps from a table 92 cm to the floor below. Assume that his velocity is zero as he leaves the table.
As he lands, he bends his knees so that he decelerates to a final speed of zero over a distance of 35 cm.
(a) What is Dae-hyun's speed just as he starts to hit the floor?
Type your answer here
(b) As he decelerates, what is the magnitude of the force exerted on him by the floor? Assume constant acceleration.
x10 to the power of
Type your answer here
Type your answer here
(You may need to involve some kinematics to solve this one!)
m/s
N on Dae-hyun.
Chapter 9 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 9 - Two objects have equal kinetic energies. How do...Ch. 9 - Your physical education teacher throws a baseball...Ch. 9 - Two objects are at rest on a frictionless surface....Ch. 9 - Rank an automobile dashboard, seat belt, and air...Ch. 9 - In a perfectly inelastic one-dimensional collision...Ch. 9 - A table-tennis ball is thrown at a stationary...Ch. 9 - A baseball bat of uniform density is cut at the...Ch. 9 - A cruise ship is moving at constant speed through...Ch. 9 - You are standing on a saucer-shaped sled at rest...Ch. 9 - Prob. 9.2OQ
Ch. 9 - A massive tractor is rolling down a country road....Ch. 9 - A 2-kg object moving to the right with a speed of...Ch. 9 - A 5-kg cart moving to the right with a speed of 6...Ch. 9 - A 57.0-g tennis ball is traveling straight at a...Ch. 9 - The momentum of an object is increased by a factor...Ch. 9 - The kinetic energy of an object is increased by a...Ch. 9 - If two particles have equal momenta, are their...Ch. 9 - If two particles have equal kinetic energies, are...Ch. 9 - A 10.0-g bullet is fired into a 200-g block of...Ch. 9 - Two particles of different mass start from rest....Ch. 9 - Two particles of different mass start from rest....Ch. 9 - A basketball is tossed up into the air, falls...Ch. 9 - A 3-kg object moving to the right on a...Ch. 9 - A ball is suspended by a string that is tied to a...Ch. 9 - A car of mass m traveling at speed v crashes into...Ch. 9 - A head-on, elastic collision occurs between two...Ch. 9 - An airbag in an automobile inflates when a...Ch. 9 - In golf, novice players are often advised to be...Ch. 9 - An open box slides across a frictionless, icy...Ch. 9 - While in motion, a pitched baseball carries...Ch. 9 - Prob. 9.5CQCh. 9 - A sharpshooter fires a rifle while standing with...Ch. 9 - Two students hold a large bed sheet vertically...Ch. 9 - A juggler juggles three balls in a continuous...Ch. 9 - (a) Does the center of mass of a rocket in free...Ch. 9 - On the subject of the following positions, state...Ch. 9 - Prob. 9.11CQCh. 9 - Prob. 9.12CQCh. 9 - A bomb, initially at rest, explodes into several...Ch. 9 - A particle of mass m moves with momentum of...Ch. 9 - An object has a kinetic energy of 275 J and a...Ch. 9 - At one instant, a 17.5-kg sled is moving over a...Ch. 9 - A 3.00-kg particle has a velocity of...Ch. 9 - A baseball approaches home plate at a speed of...Ch. 9 - A 45.0-kg girl is standing on a 150-kg plank. Both...Ch. 9 - A girl of mass mg is standing on a plank of mass...Ch. 9 - A 65.0-kg boy and his 40.0-kg sister, both wearing...Ch. 9 - In research in cardiology and exercise physiology,...Ch. 9 - When you jump straight up as high as you can, what...Ch. 9 - Two blocks of masses m and 3m are placed on a...Ch. 9 - A man claims that he can hold onto a 12.0-kg child...Ch. 9 - An estimated force-time curve for a baseball...Ch. 9 - Review. After a 0.300-kg rubber ball is dropped...Ch. 9 - A glider of mass m is free to slide along a...Ch. 9 - In a slow-pitch softball game, a 0.200-kg softball...Ch. 9 - The front 1.20 m of a 1 400-kg car Ls designed as...Ch. 9 - A tennis player receives a shot with the ball...Ch. 9 - The magnitude of the net force exerted in the x...Ch. 9 - Review. A force platform is a tool used to analyze...Ch. 9 - Water falls without splashing at a rate of 0.250...Ch. 9 - A 1 200-kg car traveling initially at vCi = 25.0...Ch. 9 - A 10.0-g bullet is fired into a stationary block...Ch. 9 - A car of mass m moving at a speed v1 collides and...Ch. 9 - A railroad car of mass 2.50 104 kg is moving with...Ch. 9 - Four railroad cars, each of mass 2.50 104 kg, are...Ch. 9 - A neutron in a nuclear reactor makes an elastic,...Ch. 9 - A 7.00-g bullet, when fired from a gun into a...Ch. 9 - A tennis ball of mass 57.0 g is held just above a...Ch. 9 - As shown in Figure P9.30, a bullet of mass m and...Ch. 9 - A 12.0-g wad of sticky clay is hurled horizontally...Ch. 9 - A wad of sticky clay of mass m is hurled...Ch. 9 - Prob. 9.33PCh. 9 - (a) Three carts of masses m1 = 4.00 kg, m2 = 10.0...Ch. 9 - A 0.300-kg puck, initially at rest on a...Ch. 9 - Prob. 9.36PCh. 9 - An object of mass 3.00 kg, moving with an initial...Ch. 9 - Two shuffleboard disks of equal mass, one orange...Ch. 9 - Two shuffleboard disks of equal mass, one orange...Ch. 9 - A proton, moving with a velocity of vii, collides...Ch. 9 - A billiard ball moving at 5.00 m/s strikes a...Ch. 9 - A 90.0-kg fullback running east with a speed of...Ch. 9 - An unstable atomic nucleus of mass 17.0 10-27 kg...Ch. 9 - The mass of the blue puck in Figure P9.44 is 20.0%...Ch. 9 - Prob. 9.45PCh. 9 - The mass of the Earth is 5.97 1024 kg, and the...Ch. 9 - Explorers in the jungle find an ancient monument...Ch. 9 - A uniform piece of sheet metal is shaped as shown...Ch. 9 - A rod of length 30.0 cm has linear density (mass...Ch. 9 - A water molecule consists of an oxygen atom with...Ch. 9 - A 2.00-kg particle has a velocity (2.00. 3.00)...Ch. 9 - Consider a system of two particles in the xy...Ch. 9 - Romeo (77.0 kg) entertains Juliet (55.0 kg) by...Ch. 9 - The vector position of a 3.50-g particle moving in...Ch. 9 - A ball of mass 0.200 kg with a velocity of 1.50...Ch. 9 - Prob. 9.56PCh. 9 - A particle is suspended from a post on top of a...Ch. 9 - A 60.0-kg person bends his knees and then jumps...Ch. 9 - Figure P9.59a shows an overhead view of the...Ch. 9 - A model rocket engine has an average thrust of...Ch. 9 - A garden hose is held as shown in Figure P9.32....Ch. 9 - Review. The first stage of a Saturn V space...Ch. 9 - A rocket for use in deep space is to be capable of...Ch. 9 - A rocket has total mass Mi = 360 kg, including...Ch. 9 - Prob. 9.65APCh. 9 - An amateur skater of mass M is trapped in the...Ch. 9 - A 3.00-kg steel ball strikes a wall with a speed...Ch. 9 - (a) Figure P9.36 shows three points in the...Ch. 9 - Review. A 60.0-kg person running at an initial...Ch. 9 - A cannon is rigidly attached to a carriage, which...Ch. 9 - A 1.25-kg wooden block rests on a table over a...Ch. 9 - A wooden block of mass M rests on a table over a...Ch. 9 - Two particles with masses m and 3m are moving...Ch. 9 - Pursued by ferocious wolves, you are in a sleigh...Ch. 9 - Two gliders are set in motion on a horizontal air...Ch. 9 - Why is the following situation impossible? An...Ch. 9 - Two blocks of masses m1 = 2.00 kg and m2 = 4.00 kg...Ch. 9 - Prob. 9.78APCh. 9 - A 0.400-kg blue bead slides on a frictionless,...Ch. 9 - A small block of mass mt = 0.500 kg is released...Ch. 9 - Review. A bullet of mass m = 8.00 g is fired into...Ch. 9 - Review. A bullet of mass m is fired into a block...Ch. 9 - A 0.500-kg sphere moving with a velocity expressed...Ch. 9 - A 75.0-kg firefighter slides down a pole while a...Ch. 9 - George of the Jungle, will mass m, swings on a...Ch. 9 - Review. A student performs a ballistic pendulum...Ch. 9 - Review. A light spring of force constant 3.85 N/m...Ch. 9 - Prob. 9.88APCh. 9 - A 5.00-g bullet moving with an initial speed of i...Ch. 9 - Review. There are (one can say) three coequal...Ch. 9 - A 2.00-g particle moving at 8.00 m/s makes a...Ch. 9 - Prob. 9.92CPCh. 9 - Two particles with masses m and 3m are moving...Ch. 9 - Sand from a stationary hopper falls onto a moving...Ch. 9 - On a horizontal air track, a glider of mass m...Ch. 9 - Review. A chain of length L and total mass M is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A space probe of mass 5.00 x 104 kg is traveling at 1.10 x 104 m/s through deep space. No forces act on the probe except that generated by its own engine. No forces act on the probe except that generated by its own engine. The engine exerts a constant external force of 4.00 x 105 N, directed parallel to the displacement, which is 2.50 x 106 m. Determine the final velocity of the probe.arrow_forwardA ball of mass m is shot straight up into the air with an initial speed vj. (a) What is the maximum height reached by the ball (in terms of vj and g)? (b) A second ball is dropped from rest from a height, h, directly above the first ball, and is released at the same time that the first ball is shot upwards. At what height will the two balls collide? Provide an expression in terms of h, Vị, and g. (c) From what height should the second ball be dropped from so that the two balls collide when the first ball is at its maximum height?arrow_forwardA tired cyclist on a bicycle (102.0 kg combined) starts with an initial velocity of 15.0 m/s at the bottom of a hill and coasts up the hill. He comes to a stop just at the top of the hill. What is the maximum height of the hill?arrow_forward
- A brick of mass 1.00 kg slides down an icy roof inclined at 30.0° with respect to the horizontal. If the brick starts from rest, how fast is it moving when it reaches the edge of the roof 2.18 m away? Ignore friction. m/sarrow_forwardAn aging coyote (m = 42.1 kg) cannot run fast enough to catch a roadrunner (m = 16.3 kg). He purchases a set of jet-powered roller skates, which proved a constant horizontal acceleration of 15.2 m/s2. The coyote starts at rest 73.2 m from the edge of a cliff at the instant the roadrunner zips past in the direction of the cliff. Hint: their initial positions at the top of the cliff are the same. a. Determine the minimum constant speed the roadrunner must have to reach the cliff before the coyote. b. At the edge of the cliff, the roadrunner escapes by making a sudden turn, while the coyote continues straight ahead. The coyote’s skates remain horizontal and continue to operate while he is in flight, so his acceleration while he is in the air is (15.2i – 9.80j) m/s2. The cliff is 127 m above the flat floor of the desert. Determine how far from the base of the vertical cliff the coyote lands. c. Determine the components of the coyote’s impulse upon impact.arrow_forwardAnswer both parts of the questionarrow_forward
- The three blocks shown are identical. Blocks B and C are at rest when block B is hit by block A, which is moving with a velocity Va of 3 ft/s. After the impact, which is assumed to be perfectly plastic (e= 0), the velocity of blocks A and B decreases due to friction, while block C picks up speed, until all three blocks are moving with the same velocity v . Knowing that the coefficient of kinetic friction between all surfaces is μk= 0.20, determine (a) the time required for the three blocks to reach the same velocity, (b) the total distance traveled by each block during that time.arrow_forwardA 50.0-g superball traveling at 25.0 m/s bounces off a brick wall and rebounds at 22.0 m/s. A high-speed camera records this event. If the ball is in contact with the wall for 3.50 ms, what is the magnitude of the average acceleration of the ball during this time interval? (Note: 1 ms = 10 s.)arrow_forwardIn a cathode ray tube, electrons are accelerated from rest by a constant electric force of magnitude 6.40 x 10-17 N during the first 2.70 cm of the tube's length; then they move at essentially constant velocity another 45.0 cm before hitting the screen. Find the speed of the electrons when they hit the screen.arrow_forward
- A teenager is pushing a cart. There is no friction between the cart and the ground. Mass of the cart is 120 kg. Cart is initially at rest (at time = 0 s). Direction to the right is positive. He pushed the cart for 5 s (from t = 0 s to t = 5 s) with a force of 75 N to the right hand side. Then he stopped pushing for 5 s (from t = 5 s to t = 10 s). Then he pushed the cart for 10 s (from t = 10 s to t = 20 s) with a force of 75 N to the left hand side. Question: Calculate the work done on the cart from t = 0 s to t = 5 s.arrow_forwardTwo masses, 44.3 kg and 66.3 kg, are connected by a string draped over a frictionless, massless pulley to form an Atwood machine. When the masses are released from rest and allowed to move a distance of 1.23 m, determine velocity of each mass at this location.arrow_forwardIn a slapshot competition, a player strikes a hockey puck with a stick, causing the puck to travel in a straight line on a smooth ice surface. The mass of the puck is 160.0 g and the coefficient of friction between the puck and the ice is 0.150. If 50.0 m from the starting point, the speed of the puck is measured to be 16.5 m/s, what was the initial speed of the puck?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Momentum | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=DxKelGugDa8;License: Standard YouTube License, CC-BY