Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 9.16OQ
A ball is suspended by a string that is tied to a fixed point above a wooden block standing on end. The ball is pulled back as shown in Figure 0Q9.16 and released. In trial A, the ball rebounds elastically from the block. In trial B, two-sided tape causes the ball to stick to the block. In which case is the ball more likely to knock the block over? (a) It is more likely in trial A. (b) It is more likely in trial B. (c) It makes no difference. (d) It could be either case, depending on other factors.
Figure 0Q9.16
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A 10 g bullet moving at 1,000 m/s goes through a 1.0 kg block. If the bullet goes through the block and comes out at a velocity of 711 m/s, determine the maximum height the block rises to. Use g = 10 N/kg.
A 12.0 g bullet was fired horizontally into a 1 kg block of wood. The bullet initially
had a speed of 250 m/s. The block of wood was hanging from a 2 m long piece of
(massless) string. After the collision the block/bullet combined object swings
upward on the string. Find the height the block/bullet combined object rises.
O 0.27 m
O 0.45m
0.35 m
0.12 m
0.66 m
A 20 gg ball of clay traveling east at 2.0 m/sm/s collides with a 20 gg ball of clay traveling north at 2.0 m/sm/s.
What is the speed of the resulting 40 gg ball of clay?
Express your answer with the appropriate units.
Chapter 9 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 9 - Two objects have equal kinetic energies. How do...Ch. 9 - Your physical education teacher throws a baseball...Ch. 9 - Two objects are at rest on a frictionless surface....Ch. 9 - Rank an automobile dashboard, seat belt, and air...Ch. 9 - In a perfectly inelastic one-dimensional collision...Ch. 9 - A table-tennis ball is thrown at a stationary...Ch. 9 - A baseball bat of uniform density is cut at the...Ch. 9 - A cruise ship is moving at constant speed through...Ch. 9 - You are standing on a saucer-shaped sled at rest...Ch. 9 - Prob. 9.2OQ
Ch. 9 - A massive tractor is rolling down a country road....Ch. 9 - A 2-kg object moving to the right with a speed of...Ch. 9 - A 5-kg cart moving to the right with a speed of 6...Ch. 9 - A 57.0-g tennis ball is traveling straight at a...Ch. 9 - The momentum of an object is increased by a factor...Ch. 9 - The kinetic energy of an object is increased by a...Ch. 9 - If two particles have equal momenta, are their...Ch. 9 - If two particles have equal kinetic energies, are...Ch. 9 - A 10.0-g bullet is fired into a 200-g block of...Ch. 9 - Two particles of different mass start from rest....Ch. 9 - Two particles of different mass start from rest....Ch. 9 - A basketball is tossed up into the air, falls...Ch. 9 - A 3-kg object moving to the right on a...Ch. 9 - A ball is suspended by a string that is tied to a...Ch. 9 - A car of mass m traveling at speed v crashes into...Ch. 9 - A head-on, elastic collision occurs between two...Ch. 9 - An airbag in an automobile inflates when a...Ch. 9 - In golf, novice players are often advised to be...Ch. 9 - An open box slides across a frictionless, icy...Ch. 9 - While in motion, a pitched baseball carries...Ch. 9 - Prob. 9.5CQCh. 9 - A sharpshooter fires a rifle while standing with...Ch. 9 - Two students hold a large bed sheet vertically...Ch. 9 - A juggler juggles three balls in a continuous...Ch. 9 - (a) Does the center of mass of a rocket in free...Ch. 9 - On the subject of the following positions, state...Ch. 9 - Prob. 9.11CQCh. 9 - Prob. 9.12CQCh. 9 - A bomb, initially at rest, explodes into several...Ch. 9 - A particle of mass m moves with momentum of...Ch. 9 - An object has a kinetic energy of 275 J and a...Ch. 9 - At one instant, a 17.5-kg sled is moving over a...Ch. 9 - A 3.00-kg particle has a velocity of...Ch. 9 - A baseball approaches home plate at a speed of...Ch. 9 - A 45.0-kg girl is standing on a 150-kg plank. Both...Ch. 9 - A girl of mass mg is standing on a plank of mass...Ch. 9 - A 65.0-kg boy and his 40.0-kg sister, both wearing...Ch. 9 - In research in cardiology and exercise physiology,...Ch. 9 - When you jump straight up as high as you can, what...Ch. 9 - Two blocks of masses m and 3m are placed on a...Ch. 9 - A man claims that he can hold onto a 12.0-kg child...Ch. 9 - An estimated force-time curve for a baseball...Ch. 9 - Review. After a 0.300-kg rubber ball is dropped...Ch. 9 - A glider of mass m is free to slide along a...Ch. 9 - In a slow-pitch softball game, a 0.200-kg softball...Ch. 9 - The front 1.20 m of a 1 400-kg car Ls designed as...Ch. 9 - A tennis player receives a shot with the ball...Ch. 9 - The magnitude of the net force exerted in the x...Ch. 9 - Review. A force platform is a tool used to analyze...Ch. 9 - Water falls without splashing at a rate of 0.250...Ch. 9 - A 1 200-kg car traveling initially at vCi = 25.0...Ch. 9 - A 10.0-g bullet is fired into a stationary block...Ch. 9 - A car of mass m moving at a speed v1 collides and...Ch. 9 - A railroad car of mass 2.50 104 kg is moving with...Ch. 9 - Four railroad cars, each of mass 2.50 104 kg, are...Ch. 9 - A neutron in a nuclear reactor makes an elastic,...Ch. 9 - A 7.00-g bullet, when fired from a gun into a...Ch. 9 - A tennis ball of mass 57.0 g is held just above a...Ch. 9 - As shown in Figure P9.30, a bullet of mass m and...Ch. 9 - A 12.0-g wad of sticky clay is hurled horizontally...Ch. 9 - A wad of sticky clay of mass m is hurled...Ch. 9 - Prob. 9.33PCh. 9 - (a) Three carts of masses m1 = 4.00 kg, m2 = 10.0...Ch. 9 - A 0.300-kg puck, initially at rest on a...Ch. 9 - Prob. 9.36PCh. 9 - An object of mass 3.00 kg, moving with an initial...Ch. 9 - Two shuffleboard disks of equal mass, one orange...Ch. 9 - Two shuffleboard disks of equal mass, one orange...Ch. 9 - A proton, moving with a velocity of vii, collides...Ch. 9 - A billiard ball moving at 5.00 m/s strikes a...Ch. 9 - A 90.0-kg fullback running east with a speed of...Ch. 9 - An unstable atomic nucleus of mass 17.0 10-27 kg...Ch. 9 - The mass of the blue puck in Figure P9.44 is 20.0%...Ch. 9 - Prob. 9.45PCh. 9 - The mass of the Earth is 5.97 1024 kg, and the...Ch. 9 - Explorers in the jungle find an ancient monument...Ch. 9 - A uniform piece of sheet metal is shaped as shown...Ch. 9 - A rod of length 30.0 cm has linear density (mass...Ch. 9 - A water molecule consists of an oxygen atom with...Ch. 9 - A 2.00-kg particle has a velocity (2.00. 3.00)...Ch. 9 - Consider a system of two particles in the xy...Ch. 9 - Romeo (77.0 kg) entertains Juliet (55.0 kg) by...Ch. 9 - The vector position of a 3.50-g particle moving in...Ch. 9 - A ball of mass 0.200 kg with a velocity of 1.50...Ch. 9 - Prob. 9.56PCh. 9 - A particle is suspended from a post on top of a...Ch. 9 - A 60.0-kg person bends his knees and then jumps...Ch. 9 - Figure P9.59a shows an overhead view of the...Ch. 9 - A model rocket engine has an average thrust of...Ch. 9 - A garden hose is held as shown in Figure P9.32....Ch. 9 - Review. The first stage of a Saturn V space...Ch. 9 - A rocket for use in deep space is to be capable of...Ch. 9 - A rocket has total mass Mi = 360 kg, including...Ch. 9 - Prob. 9.65APCh. 9 - An amateur skater of mass M is trapped in the...Ch. 9 - A 3.00-kg steel ball strikes a wall with a speed...Ch. 9 - (a) Figure P9.36 shows three points in the...Ch. 9 - Review. A 60.0-kg person running at an initial...Ch. 9 - A cannon is rigidly attached to a carriage, which...Ch. 9 - A 1.25-kg wooden block rests on a table over a...Ch. 9 - A wooden block of mass M rests on a table over a...Ch. 9 - Two particles with masses m and 3m are moving...Ch. 9 - Pursued by ferocious wolves, you are in a sleigh...Ch. 9 - Two gliders are set in motion on a horizontal air...Ch. 9 - Why is the following situation impossible? An...Ch. 9 - Two blocks of masses m1 = 2.00 kg and m2 = 4.00 kg...Ch. 9 - Prob. 9.78APCh. 9 - A 0.400-kg blue bead slides on a frictionless,...Ch. 9 - A small block of mass mt = 0.500 kg is released...Ch. 9 - Review. A bullet of mass m = 8.00 g is fired into...Ch. 9 - Review. A bullet of mass m is fired into a block...Ch. 9 - A 0.500-kg sphere moving with a velocity expressed...Ch. 9 - A 75.0-kg firefighter slides down a pole while a...Ch. 9 - George of the Jungle, will mass m, swings on a...Ch. 9 - Review. A student performs a ballistic pendulum...Ch. 9 - Review. A light spring of force constant 3.85 N/m...Ch. 9 - Prob. 9.88APCh. 9 - A 5.00-g bullet moving with an initial speed of i...Ch. 9 - Review. There are (one can say) three coequal...Ch. 9 - A 2.00-g particle moving at 8.00 m/s makes a...Ch. 9 - Prob. 9.92CPCh. 9 - Two particles with masses m and 3m are moving...Ch. 9 - Sand from a stationary hopper falls onto a moving...Ch. 9 - On a horizontal air track, a glider of mass m...Ch. 9 - Review. A chain of length L and total mass M is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Assume the pucks in Figure P11.66 stick together after theircollision at the origin. Puck 2 has four times the mass of puck 1 (m2 = 4m1). Initially, puck 1s speed is three times puck 2s speed (v1i = 3v2i), puck 1s position is r1i=x1ii, and puck 2s position is r2i=y2ij. a. Find an expression for their velocity after the collision in terms of puck 1s initial velocity. b. What is the fraction Kf/Ki that remains in the system?arrow_forwardPendulum bob 1 has mass m1. It is displaced to height h1 and released. Pendulum bob 1 elastically collides with pendulum bob 2 of mass m2 (Fig. P11.43). FIGURE P11.43 a. Find an expression for the maximum height h2 of pendulum bob 2. b. If m2 = 2.5m1 and h1 = 5.46 m, what is h2?arrow_forwardA crate of mass M is initially at rest on a frictionless, level table. A small block of mass m (m M) moves toward the crate as shown in Figure P10.31. Later, the block and crate are stuck together and are moving with some final speed. The momentum of the blockcrate system is the same both before and after the collision. Is the magnitude of the change in momentum of the crate greater than, less than, or equal to the magnitude of the change in the momentum of the block? Explain. FIGURE P10.31arrow_forward
- Two objects collide head-on (Fig. P11.39). The first object is moving with an initial speed of 8.00 m/s, and the second object is moving with an initial speed of 10.00 m/s. Assuming the collision is elastic, m1 = 5.15 kg, and m2 = 6.25 kg, determine the final velocity of each object. FIGURE P11.39arrow_forwardA garden hose is held as shown in Figure P9.32. The hose is originally full of motionless water. What additional force is necessary to hold the nozzle stationary after the water flow is turned on if the discharge rate is 0.600 kg/s with a speed of 25.0 m/s? Figure P9.32arrow_forwardTwo skateboarders, with masses m1 = 75.0 kg and m2 = 65.0 kg, simultaneously leave the opposite sides of a frictionless half-pipe at height h = 4.00 m as shown in Figure P11.49. Assume the skateboarders undergo a completely elastic head-on collision on the horizontal segment of the half-pipe. Treating the skateboarders as particles and assuming they dont fall off their skateboards, what is the height reached by each skateboarder after the collision? FIGURE P11.49arrow_forward
- There is a compressed spring between two laboratory carts of masses m1 and m2. Initially, the carts are held at rest on a horizontal track (Fig. P10.40A). The carts are released, and the cart of mass m1 has velocity v1 in the positive x direction (Fig. P10.40B). Assume rolling friction is negligible. a. What is the net external force on the two-cart spring system? b. Find an expression for the velocity of cart 2. c. Sometimes, mistakes are made in a laboratory. For example, what changes in parts (a) and (b) if the track is not level as shown in Figure P10.40C? Explain your answer.arrow_forwardInitially, ball 1 rests on an incline of height h, and ball 2 rests on an incline of height h/2 as shown in Figure P11.40. They are released from rest simultaneously and collide elastically in the trough of the track. If m2 = 4 m1, m1 = 0.045 kg, and h = 0.65 m, what is the velocity of each ball after the collision?arrow_forwardIn Figure P11.51, a cue ball is shot toward the eight-ball on a pool table. The cue ball is shot at the eight-ball with a speed of 8.00 m/s in a direction 30.0 from the y axis. Both balls have the same mass of 0.170 kg. After the balls undergo an elastic collision, the eight-ball travels in the negative x direction into the side pocket. What is the velocity of the cue ball after this collision? FIGURE P11.51arrow_forward
- Two metersticks are connected at their ends as shown in Figure P10.18. The center of mass of each individual meterstick is at its midpoint, and the mass of each meterstick is m. a. Where is the center of mass of the two-stick system as depicted in the figure, with the origin located at the intersection of the sticks? b. Can the two-stick system be balanced on the end of your finger so that it remains lying flat in front of you in the orientation shown? Why or why not? FIGURE P10.18 (a) The center of mass of the stick on the x axis would be at (0.5 m, 0), and the center of mass of the stick on the stick on the y axis be at (0, 0.5 m), assuming the sticks are uniform. We can then use Equation 10.3 to find the x and y coordinates of the center of mass. xCM=1Mj=1nmjxj=12m[m(0.50m)]=0.25myCM=1Mj=1nmjyj=12m[m(0.50m)]=0.25m The location of the center of mass is (0.25m,0.25m) (b) No. The location of the center of mass is not located on the object, so your finger would not be in contact with the object. In a different orientation, balancing by applying a force at the center of mass might be possible, but not in the orientation shown.arrow_forwardA ball is suspended by a string that is tied to a fixed point above a wooden block standing on end. The ball is pulled back as shown in Figure OQ8.14 and released. In trial A, the ball rebounds elastically from the block. In trial B, two-sided tape causes the ball to stick to the block. In which case is the ball more likely to knock the block over? (a) It is more likely in trial A. (b) It is more likely in trial B. (c) It makes no difference. (d) It could be either case, depending on other factors. Figure OQ8.14arrow_forwardInitially, ball 1 rests on an incline of height h, and ball 2 rests on an incline of height h/2 as shown in Figure P11.40. They are released from rest simultaneously and collide in the trough of the track. If m2 = 4 m1 and the collision is elastic, find an expression for the velocity of each ball immediately after the collision. FIGURE P11.40 Problems 40 and 41.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Impulse Derivation and Demonstration; Author: Flipping Physics;https://www.youtube.com/watch?v=9rwkTnTOB0s;License: Standard YouTube License, CC-BY