(a)
Interpretation:
The rate (SCF/h) at which the biogas produced in the digester should be calculated along with the total heating value (Btu/h) of the gas.
Concept introduction:
The total solid obtained is the product of amount of water that is converted to solid under water treatment process and the solid of the feed digester can be calculated as follows:
The total heating value is obtained as:
Total heating value for gas = Fuel flow rate × LHV
Where, LHV is lower heating value.
(b)
Interpretation:
The rate of heat transfer (Btu/h) between the hot water and the sludge should be calculated along with the volumetric flow rate (ft3/h) of the water passing through the heat exchanger.
Concept introduction:
The heat transfer between hot medium and the sludge is calculated as:
Here, h is the heat transfer coefficient and A is the sludge surface area while Tmedium and Tsludge are the temperature of hot water medium and the sludge respectively.
(c)
Interpretation:
The fraction of the digester gas that must be burned to heat the water from 160? to 180? should be obtained and it should be commented that what will happens to the other 20% of the heating value.
Concept introduction:
The biogas is burned in 80% efficient boiler, there is some amount of moisture content present in gas, so that some amount of heat is used to remove these moisture content.
The mass flow rate will be calculated from this formula:
Where m is the mass flow rate, Q is heat flow rate a, Cp is heat capacity and dT is change in temperature.
(d)
Interpretation:
If there is excess digester gas available after meeting the process-water heating demand, then the potential uses should be explained.
Concept introduction:
The boiler furnaces have the heavy application of digester gases which are consumed to heat the furnace. But, when the water-heating demand is filled, there remains the gases and energy consumed in heating the boiler and these sources of energy can be consumed in various other purposes.

Trending nowThis is a popular solution!

Chapter 9 Solutions
ELEMENTARY PRINCIPLES OF CHEM. PROCESS.
- Calculate the pH and the pOH of each of the following solutions at 25 °C for which the substances ionize completely: (a) 0.000259 M HClO4arrow_forwardWhat is the pH of a 1.0 L buffer made with 0.300 mol of HF (Ka = 6.8 × 10⁻⁴) and 0.200 mol of NaF to which 0.160 mol of NaOH were added?arrow_forwardDetermine if the following salt is neutral, acidic or basic. If acidic or basic, write the appropriate equilibrium equation for the acid or base that exists when the salt is dissolved in aqueous solution. If neutral, simply write only NR. Be sure to include the proper phases for all species within the reaction. NaN₃arrow_forward
- A. Draw the structure of each of the following alcohols. Then draw and name the product you would expect to produce by the oxidation of each. a. 4-Methyl-2-heptanol b. 3,4-Dimethyl-1-pentanol c. 4-Ethyl-2-heptanol d. 5,7-Dichloro-3-heptanolarrow_forwardWhat is the pH of a 1.0 L buffer made with 0.300 mol of HF (Ka = 6.8 × 10⁻⁴) and 0.200 mol of NaF to which 0.160 mol of NaOH were added?arrow_forwardCan I please get help with this.arrow_forward
- Determine if the following salt is neutral, acidic or basic. If acidic or basic, write the appropriate equilibrium equation for the acid or base that exists when the salt is dissolved in aqueous solution. If neutral, simply write only NR. Be sure to include the proper phases for all species within the reaction. N₂H₅ClO₄arrow_forwardPlease help me with identifying these.arrow_forwardCan I please get help with this?arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning




