(a)
Interpretation:
The rate (SCF/h) at which the biogas produced in the digester should be calculated along with the total heating value (Btu/h) of the gas.
Concept introduction:
The total solid obtained is the product of amount of water that is converted to solid under water treatment process and the solid of the feed digester can be calculated as follows:
The total heating value is obtained as:
Total heating value for gas = Fuel flow rate × LHV
Where, LHV is lower heating value.
(b)
Interpretation:
The rate of heat transfer (Btu/h) between the hot water and the sludge should be calculated along with the volumetric flow rate (ft3/h) of the water passing through the heat exchanger.
Concept introduction:
The heat transfer between hot medium and the sludge is calculated as:
Here, h is the heat transfer coefficient and A is the sludge surface area while Tmedium and Tsludge are the temperature of hot water medium and the sludge respectively.
(c)
Interpretation:
The fraction of the digester gas that must be burned to heat the water from 160? to 180? should be obtained and it should be commented that what will happens to the other 20% of the heating value.
Concept introduction:
The biogas is burned in 80% efficient boiler, there is some amount of moisture content present in gas, so that some amount of heat is used to remove these moisture content.
The mass flow rate will be calculated from this formula:
Where m is the mass flow rate, Q is heat flow rate a, Cp is heat capacity and dT is change in temperature.
(d)
Interpretation:
If there is excess digester gas available after meeting the process-water heating demand, then the potential uses should be explained.
Concept introduction:
The boiler furnaces have the heavy application of digester gases which are consumed to heat the furnace. But, when the water-heating demand is filled, there remains the gases and energy consumed in heating the boiler and these sources of energy can be consumed in various other purposes.

Trending nowThis is a popular solution!

Chapter 9 Solutions
ELEM.PRIN.OF CHEM.PROCESS-ACCESS
- 8. The thermal decomposition of nitric oxide at elevated temperatures 2NO → N₂+02 has been studied in a batch reactor where at temperatures below 2000K the rate expression that applies to low conversions is: r = kCm05 Co At high conversions, or when the initial mixture contains a high concentration of O2 the rate expression is given by: r = k' Cм0.5 C15C0,5 To explain these kinetics the following chain reaction mechanism has been proposed: Initiation: Propagation: 2NON₂O +0 k₂ E1=272.0 kJ/mol 0+ NO O₂+ N E₂-161.0 kJ/mol N+NO N₂+0 E3-1.4 kJ/mol K4 20+ MO₂+M E4=14.0 kJ/mol ks Termination: where M is any molecule capable of the energy transfer necessary to stabilize the oxygen molecule. Once appreciable amounts of O2 are present in the reaction mixture, the initiation reaction that is the primary source of atomic oxygen is no longer the first reaction. Instead, the following reaction begins to dominate the chain initiation process: Initiation (high O2): ks NO +0₂ NO₂+0 E5=198.0 kJ/mol a.…arrow_forward2:41 2) If the number-average degree of polymerization for styrene obtained by the bulk polymerization at 25°C is 5,000, what would be the number-average degree of polymerization if conducted in a 10% solution in toluene (900g of toluene per 100 g of styrene) under otherwise identical conditions? State any assumptions that are needed. (see Table 2-4). Table 2-4 Representative Values of Chain-Transfer Constants Monomer Styrene Chain-Transfer Agent T (°C) C x 104 Styrene 25 bas 0.279 * 50 0.35-0.78 Polystyrene 50 1.9-16.6 Benzoyl peroxide 50 0.13 Toluene 60 0.125 Methyl methacrylate Methyl methacrylate 30 0.117 70 0.2 Poly(methyl methacrylate) 50 0.22-1000 Benzoyl peroxide 50 0.01 Toluene 40 0.170 3) 2 3) Methyl methacrylate is copolymerized with 2-methylbenzyl methacrylate (M₁) in 1,4- dioxane at 60°C using AIBN as the free-radical initiator. (a) Draw the repeating unit of poly(2-methylbenzyl methacrylate). (b) From the data given in the table below, estimate the reactivity ratios of…arrow_forwardA piston–cylinder device initially contains 0.6 m3 of saturated water vapor at 250 kPa. At this state, the piston is resting on a set of stops, and the mass of the piston is such that a pressure of 300 kPa is required to move it. Heat is now slowly transferred to the steam until the volume becomes 1 m3. Use the data from the steam tables. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the final temperature. The final temperature is ºC. Determine the work done during this process Determine the total heat transferarrow_forward
- Consider a mixture of carbon monoxide and water at 25°C:a. Does an azeotrope exist for this mixture at 25°C? If so, at what composition andpressure? If not, how do you know?b. If the total composition of the mixture is 10. mol% carbon monoxide, what will bethe pressure limits of VLE for this mixture at 25°C? show all the calculation stepsarrow_forwardA passive solar house was determined to lose heat to the outdoors at an average rate of 50,000 kJ/h during a typical 10-hour winter night. The house is to be maintained at 22°C at all times. Passive heating is accomplished by 50 glass containers each containing 20 L of water that is heated to 80°C during the day by absorbing solar energy. A 15-kW back-up electric resistance heater turns on whenever necessary to keep the house at 22°C. (a) How many hours does the electric heating system run during a typical winter night? (b) How many hours would the electric heater run during a typical winter night if the house did not have passive solar heating? For the density and specific heat of water at room temperature, use p = 1 kg/L and cp = 4.18 kJ/kg.°Carrow_forwardA well-insulated rigid tank contains 3 kg of a saturated liquid-vapor mixture of water at 200 kPa. Initially, three-quarters of the mass is in the liquid phase. An electric resistance heater placed in the tank is now turned on and kept on until all the liquid in the tank is vaporized. Determine the entropy change of the water during this process.arrow_forward
- Heat in the amount of 100 kJ is transferred directly from a hot reservoir (heat source) at 1200 K to a cold reservoir (heat sink) at 600 K. Calculate the entropy change of the two reservoirs and determine if the second law of thermodynamics is satisfied.arrow_forwardThe following chemical reaction takes place at 500K and 1 atm and the products leaves at 1000K aCH4 + b(O2 + 3.76N2)=7.7CO2 + 0.5CO + 2CH4+2.95O2 + 86.85N2 + cH2O use the specific heat capacity given in Table A-21 (Moran and Shapiro, page 755) and the heat of formation given in Tabble A-25 (Moran and Shapiro, page 763) determine: 1. The stoichiometric coefficients (a, b, and c) 2. The air-fuel ratio on a molar basis 3. The air-fuel ratio on a mass basis 4. The stoichiometric air fuel ratio 5. The excess air (%) 6. The lower heating value 7. The rate of heat transfer from the combustion chamber.arrow_forward3. Nitric oxide is produced in the body by several different enzymes and acts as a signal that controls blood pressure, long-term memory, and other critical functions. The major route for removing NO from biological fluids is via reaction with O2 to give NO₂ 2NO(g) + O2(g) → 2NO2(g) The following table lists kinetics data for the reaction of NO with O2 at 25°C: Experiment 1 [NO] (M) 0.0235 2 0.0235 3 0.0470 4 0.0470 (a) Determine the rate law for the reaction (b) calculate the rate constant. [02]0 (M) Initial Rate (M/s) 0.0125 7.98 × 10-3 0.0250 15.9 × 10-3 0.0125 32.0 × 10-3 0.0250 63.5 x 10-3 5:32arrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The





