In the production of many microelectronic devices, continuous chemical vapor deposition (CVD) processes are used to deposit thin and exceptionally uniform silicon dioxide films on silicon wafers. One CVD process involves the reaction between silane and oxygen at a very low pressure.
The feed gas, which contains oxygen and silane in a ratio 8.00 mol O2/mol SiH4, enters the reactor at 298 K and 3.00 torr absolute. The reaction products emerge at 1375 K and 3.00 torr absolute. Essentially all of the silane in the feed is consumed.
Taking a basis of 1 m3of feed gas, calculate the moles of each component of the feed and product mixtures and the extent of reaction,
- Calculate the standard heat of the silane oxidation reaction (kJ). Then, taking the feed and product species at 298 K (25°C) as references, prepare an inlet-outlet enthalpy table and calculate and fill in the component amounts (mol) and specific enthalpies (kJ/mol). (See Example 9.5-1.) Data
The temperatures in the formulas for Cpare in kelvins.
- Calculate the heat (kJ) that must be transferred to or from the reactor (state which it is). Then determine the required heat transfer rate (kW) required for a reactor feed of 27.5 m 3/h.
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 9 Solutions
ELEM.PRIN.OF CHEM.PROCESS-ACCESS
Additional Engineering Textbook Solutions
Starting Out with Java: From Control Structures through Data Structures (4th Edition) (What's New in Computer Science)
Web Development and Design Foundations with HTML5 (8th Edition)
Modern Database Management
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
Mechanics of Materials (10th Edition)
Concepts Of Programming Languages
- A biologically active protein produced in Escherichia coli fermentations is purified byprecipitation. A 200 L solution containing 5.2 wt% protein is treated in a batch precipitationreactor. 1 kg of salt is added to induce protein precipitation. At the end of the process, theremaining solution contains 1.5 wt% protein, and the precipitate is wet with 5wt% of water.(a) What is the mass of the residual protein solution?(b) What mass of protein precipitate is produced?Assume the density of the solution remains approximately 1.00 g/mL throughout the process,and that the concentration of salt in the water captured in the precipitate is the same as theconcentration of salt in total.arrow_forwardرايدة حل هذا السؤال تكدر ترفعه الي محتاجه حله ضروريarrow_forwardThe particulate emissions were measured from a factory stack. The stack was divided into three sectors with different cross-sectional areas. The measured velocities and particulate concentrations were given below. Sector number 1 2 3 Cross-sectional Stack velocity area (m²) (ft/s) 1.0 60 1.2 45 1.4 55 a) What is the average particulate concentration in mg/m³? Particulate concentration (mg/m³) 450 530 610 b) What are the particulate emissions per unit area in g/m²-s for sector number 1, 2 and 3? c) What are the flow rates of particulates in g/s for sector number 1, 2 and 3?arrow_forward
- 2) Ammonia (NH3) is an important base, particularly in wastewaters. Consider a solution that contains a total of 10-3 M of ammonia in water. NH4+ = NH3 + H+ KA=10-9.3 a) Use the equilibrium expression and concept of mass balance to write an expression for each of the following species: log [NH4*] and log [NH3]. b) Prepare a log C-pH diagram for the solution described above. Label each line on your graph with the name of the chemical species it represents. [Notes: Your diagram should contain 4 lines, one for each of the four species in the system. You may draw your diagram by hand or using Excel or other software.] c) Use your diagram to find the equilibrium pH of the solution. Use a circle or “X” to mark your answer point on the diagram. d) Now consider a new solution made by adding 10-3 M of NH4Cl to water. Write the charge balance or proton condition for this solution. Use your diagram to determine the equilibrium pH of this solution. e) Suppose it is winter and your water…arrow_forwardMethylamine is used in the manufacturing of several various pharmaceutical products. Atone facility, there is a 2000 lbm tank of methylamine. If the entire tank is releasedcontinuously during a 20-minute time period, determine the concentration in ppm at adistance 1 mile directly downwind. Does this exceed published exposure limits formethylamine? Assume the release is at ground level, and it is an overcast night with a 5mph wind.arrow_forwardEmergency response for the rupture of an ammonia pipeline is being planned. Themaximum estimated flow rate from the rupture is 20 kg/s. Local authorities havedetermined that evacuations are necessary if the concentration exceeds the ERPG-2 level.Assume a temperature of 20˚C, wind speed of 3 m/s, atmospheric pressure of 1 atm, 70%cloud cover and rural conditions. State any other assumptions.a. How far directly downwind needs to be evacuated?b. Using a spreadsheet (such as excel), draw a plot of the isopleth at thisconcentration. You should have at least 8 different distances downwind markedon your plot.arrow_forward
- A reactor in a pesticide plant contains 8000 lbm of a liquid mixture of 50% by weightmethyl isocyanate (MIC). The liquid is near its boiling point. A study of various releasescenarios indicates that a rupture of the reactor will spill the liquid to a boiling pool onthe ground. The boiling rate of the MIC has been estimated to be 50 lb m/min. Evacuationof the population must occur in areas where the vapor concentration exceeds ERPG-3levels. If the wind speed is 10 mph on a clear winter night, estimate the distancedownwind that must be evacuated.arrow_forwardA burning dump emits an estimated 1.5 kg/min of nitrogen dioxide (NO2 ). On a partlycloudy morning with a 2.5 m/s wind and temperature of 18°C, what is the concentrationof NO2 at a distance of 3.0 km directly downwind of the dump? Does this exceed theshort-term exposure limit for NO2 ? State your assumptions.arrow_forwardFor each set of measurements below, calculate the Grubbs statistic, G, look up the appropriate critical value of G from Table 4.6, and determine whether the Grubbs test supports discarding the first value in the list at the 95% level of confidence. a) 106.0, 165.0, 167.5, 170.5, 163.5, 170.7 (Geale -2.028; Gerit 1.822; yes, the Grubbs test supports discarding 106.0) b) 214.8, 263.0, 229.9, 236.9, 221.8, 230.8, 241.1 c) 357.0, 309.3, 304.9, 314.8, 305.8, 295.3, 284.7, 299.5 TABLE 4-6 Critical values of G for rejection of outlier Number of observations otsulsve os Tenos nagsibarito G to buboxy (95% confidence) 456 1.463 1.672 1.822 7 1.938 8 upa 2.032 9 2.110 10 2.176 - 1 12 15 20 11 2.234 2.285 2.409 2.557arrow_forward
- #1 A irreversible isothermal gas-phase isomerization reaction is given as: AB. This reaction is conducted in a 400L batch reactor and 100 mol of A (NAD = 100 mol) is charged into this reactor. The rate of reaction is determined as a function of the conversion of reactant A and the results are given below. The temperature was constant at 500K and the total pressure was constant at 830 kPa. The entering number of moles of species A is 100 mol. Calculate the time necessary to achieve 80% conversion. 0 0.1 0.2 0.4 -TA (mol/m³.s) 0.45 0.37 0.3 0.195 0.6 0.113 0.7 0.079 0.8 0.05arrow_forward#3 A irreversible isothermal liquid-phase reaction is given as: A → B is conducted in continuous flow systems. The rate of reaction is determined as a function of the conversion of reactant A and the results are given below. The temperature was constant at 500K. The entering molar flow rate of A is 0.4 mol/min. a) If this reaction is conducted in two CSTRS in series. Calculate the required reactor volume of each CSTRS if conversion X₁ = 0.4 and conversion X2 = 0.8. b) If this reaction is conducted in two PFRS in series. Calculate the required reactor volume of each PFRS if conversion X₁ = 0.4 and conversion X2 = 0.8. c) If this reaction is conducted in a PFR followed by a CSTR. Calculate the required reactor volume of PFR if conversion X₁ = 0.4 and of CSTR if conversion X2 = 0.8. X -A (mol/L.min) 0 0.1 0.2 0.4 0.6 0.7 0.8 0.45 0.37 0.3 0.195 0.113 0.079 0.05arrow_forward#2 An exothermic reaction, AB + C, was carried out adiabatically in a PFR or a CSTR and the following data was recorded. The entering molar flow rate of A was 300 mol/min. Calculate the necessary i) PFR volume and ii) CSTR volume to achieve 40% conversion. X 0 0.2 0.4 0.45 0.5 0.6 0.8 0.9 -TA (mol/L-min) 1 1.67 5 5 5 5 1.25 0.91arrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259696527/9781259696527_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780133887518/9780133887518_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781119285915/9781119285915_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285061238/9781285061238_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780072848236/9780072848236_smallCoverImage.gif)