ELEM.PRIN.OF CHEM.PROCESS-ACCESS
ELEM.PRIN.OF CHEM.PROCESS-ACCESS
4th Edition
ISBN: 9781119099918
Author: FELDER
Publisher: WILEY
bartleby

Concept explainers

Question
Book Icon
Chapter 9, Problem 9.26P
Interpretation Introduction

(a)

Interpretation:

The volumetric flow rate in ft3/hr needs to be calculated for feed stream and product gases.

Concept introduction:

Volumetric flow rate is calculated using volume calculated by ideal gas law and scale factor which is defined as the ratio of number of moles of actual fed to the number of moles taken as basis

%Excessair=((nair)feed-(nair)theoritical(nair)theoritical)

Percent excess air is the ratio of difference between the number of moles of air feed and moles of air theoretically required to number of moles theoretically required.

Interpretation Introduction

(b)

Interpretation:

Rate of heat transfer from the reactor in Btu/hr and flow rate of cooling water is to be calculated.

Concept introduction:

The amount of heat transferred is calculated by:

Q=outnH^iinnH^i

Where,

outnH^i is the heat of formation of product

innH^i is the heat of formation of reactant

Enthalpy of reactant and product depends upon the specific heat and the temperature difference.

Energy Transfer for cooling is calculated as follows:

Q=ΔH=mwT2T1(cp)H2OdT

Here,

Q= Amount of heat transfer in Btu

cp is the heat capacity of water in Btulbm.oF

mw be the flow rate of cooling water

Interpretation Introduction

(c)

Interpretation:

State the causes of problem if the flow rate of coolant is increased and the product gases temperature cannot attain the given temperature value.

Concept introduction:

Energy Transfer for cooling is calculated as follows:

Q=ΔH=mwT2T1(cp)H2OdT

Here,

Q= Amount of heat transfer in Btu.

cp is the heat capacity of water in Btulbm.oF.

mw be the flow rate of cooling water.

Blurred answer
Students have asked these similar questions
2:41 2) If the number-average degree of polymerization for styrene obtained by the bulk polymerization at 25°C is 5,000, what would be the number-average degree of polymerization if conducted in a 10% solution in toluene (900g of toluene per 100 g of styrene) under otherwise identical conditions? State any assumptions that are needed. (see Table 2-4). Table 2-4 Representative Values of Chain-Transfer Constants Monomer Styrene Chain-Transfer Agent T (°C) C x 104 Styrene 25 bas 0.279 * 50 0.35-0.78 Polystyrene 50 1.9-16.6 Benzoyl peroxide 50 0.13 Toluene 60 0.125 Methyl methacrylate Methyl methacrylate 30 0.117 70 0.2 Poly(methyl methacrylate) 50 0.22-1000 Benzoyl peroxide 50 0.01 Toluene 40 0.170 3) 2 3) Methyl methacrylate is copolymerized with 2-methylbenzyl methacrylate (M₁) in 1,4- dioxane at 60°C using AIBN as the free-radical initiator. (a) Draw the repeating unit of poly(2-methylbenzyl methacrylate). (b) From the data given in the table below, estimate the reactivity ratios of…
A piston–cylinder device initially contains 0.6 m3 of saturated water vapor at 250 kPa. At this state, the piston is resting on a set of stops, and the mass of the piston is such  that a pressure of 300 kPa is required to move it. Heat is now slowly transferred to the steam until the volume becomes 1 m3. Use the data from the steam tables. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part.   Determine the final temperature.   The final temperature is  ºC. Determine the work done during this process Determine the total heat transfer
Consider a mixture of carbon monoxide and water at 25°C:a. Does an azeotrope exist for this mixture at 25°C? If so, at what composition andpressure? If not, how do you know?b. If the total composition of the mixture is 10. mol% carbon monoxide, what will bethe pressure limits of VLE for this mixture at 25°C?   show all the calculation steps

Chapter 9 Solutions

ELEM.PRIN.OF CHEM.PROCESS-ACCESS

Ch. 9 - Prob. 9.11PCh. 9 - Prob. 9.12PCh. 9 - In the production of many microelectronic devices,...Ch. 9 - Prob. 9.14PCh. 9 - Prob. 9.15PCh. 9 - Prob. 9.16PCh. 9 - Prob. 9.17PCh. 9 - Carbon monoxide at 25°C and steam at 150°C are fed...Ch. 9 - Prob. 9.19PCh. 9 - Prob. 9.20PCh. 9 - Ethyl alcohol (ethanol) can be produced by the...Ch. 9 - Prob. 9.22PCh. 9 - Prob. 9.23PCh. 9 - Prob. 9.24PCh. 9 - Formaldehyde is produced commercially by the...Ch. 9 - Prob. 9.26PCh. 9 - Prob. 9.27PCh. 9 - Prob. 9.28PCh. 9 - Prob. 9.29PCh. 9 - A gas mixture containing 85 mole% methane and the...Ch. 9 - Ethylene oxide is produced by the catalytic...Ch. 9 - Cumene (C6H5C3H7) is produced by reacting benzene...Ch. 9 - Ethylbenzene is converted to styrene in the...Ch. 9 - Prob. 9.34PCh. 9 - Prob. 9.35PCh. 9 - Prob. 9.36PCh. 9 - Prob. 9.37PCh. 9 - Coke can be converted into CO—a fuel gas—in the...Ch. 9 - Prob. 9.39PCh. 9 - Prob. 9.40PCh. 9 - Prob. 9.41PCh. 9 - The equilibrium constant for the ethane...Ch. 9 - You are checking the performance of a reactor in...Ch. 9 - Hydrogen is produced in the steam reforming of...Ch. 9 - Prob. 9.45PCh. 9 - Five cubic meters of a 1.00-molar aqueous sulfuric...Ch. 9 - Prob. 9.47PCh. 9 - Prob. 9.48PCh. 9 - Prob. 9.49PCh. 9 - Calcium chloride is a salt used in a number of...Ch. 9 - A dilute aqueous solution of sulfuric acid at 25°C...Ch. 9 - A 2.00 mole% sulfuric acid solution is neutralized...Ch. 9 - A 12.0-molar solution of sodium hydroxide (SG =...Ch. 9 - Citric acid (C6H8O7) is used in the preparation of...Ch. 9 - Ammonia scrubbing is one of many processes for...Ch. 9 - Various uses for nitric acid are given in Problem...Ch. 9 - A natural gas is analyzed and found to consist of...Ch. 9 - Prob. 9.58PCh. 9 - A fuel gas is known to contain methane, ethane,...Ch. 9 - A fuel gas containing 85.0 mole% methane and the...Ch. 9 - A mixture of air and a fine spray of gasoline at...Ch. 9 - The heating value of a fuel oil is to be measured...Ch. 9 - Methanol vapor is burned with excess air in a...Ch. 9 - Methane at 25°C is burned in a boiler furnace with...Ch. 9 - Methane is burned completely with 40% excess air....Ch. 9 - A gaseous fuel containing methane and ethane is...Ch. 9 - A coal contains 73.0 wt% C, 4.7% H (not including...Ch. 9 - A mixture of methane, ethane, and argon at 25°C is...Ch. 9 - Prob. 9.69PCh. 9 - Prob. 9.70PCh. 9 - Prob. 9.71PCh. 9 - A bituminous coal is burned with air in a boiler...Ch. 9 - Prob. 9.73PCh. 9 - A natural gas containing 82.0 mole% CH4and the...Ch. 9 - Prob. 9.75PCh. 9 - Liquid n-pentane at 25°C is burned with 30% excess...Ch. 9 - Methane is burned with 25% excess air in a...Ch. 9 - Methane and 30% excess air are to be fed to a...Ch. 9 - Prob. 9.79PCh. 9 - In Problem 9.79, the synthesis of methanol from...Ch. 9 - Natural gas that contains methane, ethane, and...Ch. 9 - Prob. 9.82PCh. 9 - The wastewater treatment plant at the Ossabaw...
Knowledge Booster
Background pattern image
Chemical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The