Concept explainers
Using the molecular orbital model, write electron configurations for the following diatomic species and calculate the bond orders. Which ones are paramagnetic? Place the species in order of increasing bond length and bond energy.
a. CN+
b. CN
c. CN−
(a)
Interpretation: The electronic configuration for the given diatomic species is to be determined and their bond orders have to be calculated. The paramagnetic species have to be identified. The given molecules have to be placed in the correct order of increasing bond length and bond energy.
Concept introduction: The electronic configuration for multi-electron diatomic is written using the molecular orbitals, derived from the
The bond order is directly proportional to the bond energy and inversely proportional to the bond length.
To determine: The electronic configuration of
Answer to Problem 56E
Answer
The configuration of
Explanation of Solution
The electronic configuration of the involved atoms is,
The number of valence electrons present in
The molecular orbital configuration of
Number of bonding electrons
Number of non-bonding electrons
Hence,
Bond order
No unpaired electron is present; hence it is a diamagnetic molecule.
(b)
Interpretation: The electronic configuration for the given diatomic species is to be determined and their bond orders have to be calculated. The paramagnetic species have to be identified. The given molecules have to be placed in the correct order of increasing bond length and bond energy.
Concept introduction: The electronic configuration for multi-electron diatomic is written using the molecular orbitals, derived from the
The bond order is directly proportional to the bond energy and inversely proportional to the bond length.
To determine: The electronic configuration of
Answer to Problem 56E
Answer
The configuration of
Explanation of Solution
The electronic configuration of the involved atoms is,
The number of valence electrons present in
The molecular orbital configuration of
Number of bonding electrons
Number of non-bonding electrons
Hence,
Bond order
The
(c)
Interpretation: The electronic configuration for the given diatomic species is to be determined and their bond orders have to be calculated. The paramagnetic species have to be identified. The given molecules have to be placed in the correct order of increasing bond length and bond energy.
Concept introduction: The electronic configuration for multi-electron diatomic is written using the molecular orbitals, derived from the
The bond order is directly proportional to the bond energy and inversely proportional to the bond length.
To determine: The electronic configuration of
Answer to Problem 56E
Answer
The configuration of
Explanation of Solution
The electronic configuration of the involved atoms is,
The number of valence electrons present in
The molecular orbital configuration of
Number of bonding electrons
Number of non-bonding electrons
Hence,
Bond order
No unpaired electron is present; hence it is a diamagnetic molecule.
The diatomic configuration of a diatomic species can be determined using the molecular orbital diagram. The difference between the bonding electrons and the non-bonding electrons divided by two gives the bond order of the molecule.
The bond order is inversely proportional to bond length. The molecule having the least bond order value has the greatest bond length.
The bond order is directly proportional to bond energy. The molecule having the least bond order value has the least bond energy.
The bond order is directly proportional to the bond energy and inversely proportional to the bond length.
Want to see more full solutions like this?
Chapter 9 Solutions
Chemistry
- a Carbonyl fluoride, COF2, is an extremely poisonous gas used in organofluorine synthesis. Give the valence bond description of the carbonyl fluoride molecule. (Both fluorine atoms are attached to the carbon atom.) b Nitrogen, N2, makes up about 80% of the earths atmosphere. Give the valence bond description of this molecule.arrow_forwardFClO2 and F3ClO can both gain a fluoride ion to form stable anions. F3ClO and F3ClO2 will both lose a fluoride ion to form stable cations. Draw the Lewis structures and describe the hybrid orbitals used by chlorine in these ions.arrow_forwardBest Lewis Formula and Molecular Geometry A student writes the Lewis electron-dot formula for the carbonate anion, CO32, as a Does this Lewis formula obey the octet rule? Explain. What are the formal charges on the atoms? Try describing the bonding for this formula in valence bond terms. Do you have any difficulty doing this? b Does this Lewis formula give a reasonable description of the electron structure, or is there a better one? If there is a better Lewis formula, write it down and explain why it is better. c The same student writes the following resonance description for CO2: Is there something wrong with this description? (What would you predict as the geometries of these formulas?) d Is one or the other formula a better description? Could a value for the dipole moment help you decide? e Can you write a Lewis formula that gives an even better description of CO2? Explain your answer.arrow_forward
- Predict the molecular structure (including bond angles) for each of the following. (See Exercises 115 and 116.) a. XeCl2 b. ICl3 c. TeF4 d. PCl5arrow_forwardPredict the molecular structure (including bond angles) for each of the following. (See Exercises 115 and 116.) a. ICl5 b. XeCl4 c. SeCl6arrow_forwardWhich of the following molecules and ions contain polar bonds? Which of these molecules and ions have dipole moments? (a) CIF5 (b) CIO2 (c) TeCI42 (d) PCl3 (e) SeF4 (f) PH2 (g) XeF2arrow_forward
- Predict the valence electron molecular orbital configurations for the following, and state whether they will be stable or unstable ions. (a) Na,2+ (b) Mg,2 (c) AI,2 (d) Si,2 (e) p2+ (f) s,2 (g) F,2 (h) Ar,2 40. Predict the valence electron molecular orbital configurations for the following, and state whether they will be stable or unstable ions. (a) Na22+ (b) Mg22+ (c) Al22+ (d) Si22+ (e) P22+ (f) S22+ (g) F22+ (h) Ar22+arrow_forwardExplain why bonds occur at specific average bond distances instead of the atoms approaching each other infinitely close.arrow_forwardIt is possible to write a simple Lewis structure for the SO42- ion, involving only single bonds, which follows the octet rule. However, Linus Pauling and others have suggested an alternative structure, involving double bonds, in which the sulfur atom is surrounded by six electron pairs. (a) Draw the two Lewis structures. (b) What geometries are predicted for the two structures? (c) What is the hybridization of sulfur in each case? (d) What are the formal charges of the atoms in the two structures?arrow_forward
- 7.91 A Lewis structure for the oxalate ion is shown below. (One or more other resonance forms are also possible.) What is the correct charge on the oxalate ion? What type of orbital hybridization is expected for each of the carbon atoms in this structure? How many sigma bonds and how many pi bonds does the structure contain?arrow_forwardDescribe the molecular orbital configurations of C2, C2, and C22. What are the bond orders of these species? Arrange the three species by increasing bond length. Arrange the species by increasing bond enthalpy. Explain these arrangements of bond length and bond enthalpy.arrow_forwardComplete the following resonance structures for POCl3. a. Would you predict the same molecular structure from each resonance structure? b. What is the hybridization of P in each structure? c. What orbitals can the P atom use to form the bond in structure B? d. Which resonance structure would be favored on the basis of formal charges?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning