Inquiry into Physics
8th Edition
ISBN: 9781337515863
Author: Ostdiek
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 54Q
To determine
To explain the glass-air interface in the given prisms.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
please include illustrations, i’m having trouble visualizing the main idea.. Thank you! ?
A concave mirror has a focal length of 15 cm. What is the magnification if the object's distance is 105 cm?A healthy person has a body temperature of 98.6 oF. Use the properties of blackbody radiation to work out the precise wavelength of the peak radiation. (Hint: Convert Fahrenheit degrees into Kelvin (absolute) degrees.)
Let v be the wave's speed, λ its wavelength, and f its frequency. These quantities are related via the equation v=λf. Note that, if the wave speed decreases, the wavelength must also decrease for the frequency to remain constant.
What is the wavelength λ of light in glass, if its wavelength in air is λ0, its speed in air is c, and its speed in the glass is v?
Express your answer in terms of λ0, c, and v.
If light strikes the air/glass interface at an angle 32.0 degrees to the normal, what is the angle of reflection, θr?
Chapter 9 Solutions
Inquiry into Physics
Ch. 9 - Give three advantages that the Fresnel lens design...Ch. 9 - Prob. 2OEACh. 9 - Prob. 1PIPCh. 9 - Thomas Young’s conception of the fundamental...Ch. 9 - The shell” of a concept map dealing with lenses...Ch. 9 - Sections 9.6 and 9.7 deal with the phenomena of...Ch. 9 - (Indicates a review question, which means it...Ch. 9 - Prob. 2QCh. 9 - Prob. 3QCh. 9 - Prob. 4Q
Ch. 9 - Prob. 5QCh. 9 - Prob. 6QCh. 9 - Prob. 7QCh. 9 - Prob. 8QCh. 9 - Prob. 9QCh. 9 - Prob. 10QCh. 9 - Prob. 11QCh. 9 - (Indicates a review question, which means it...Ch. 9 - (Indicates a review question, which means it...Ch. 9 - (Indicates a review question, which means it...Ch. 9 - Prob. 15QCh. 9 - Prob. 16QCh. 9 - (Indicates a review question, which means it...Ch. 9 - (Indicates a review question, which means it...Ch. 9 - (Indicates a review question, which means it...Ch. 9 - Prob. 20QCh. 9 - Prob. 21QCh. 9 - Prob. 22QCh. 9 - Prob. 23QCh. 9 - Prob. 24QCh. 9 - Prob. 25QCh. 9 - Prob. 26QCh. 9 - Prob. 27QCh. 9 - (Indicates a review question, which means it...Ch. 9 - Prob. 29QCh. 9 - Prob. 30QCh. 9 - Prob. 31QCh. 9 - Prob. 32QCh. 9 - Prob. 33QCh. 9 - (Indicates a review question, which means it...Ch. 9 - Prob. 35QCh. 9 - Prob. 36QCh. 9 - Prob. 37QCh. 9 - (Indicates a review question, which means it...Ch. 9 - Prob. 39QCh. 9 - Prob. 40QCh. 9 - Prob. 41QCh. 9 - (Indicates a review question, which means it...Ch. 9 - Prob. 43QCh. 9 - Prob. 44QCh. 9 - Prob. 45QCh. 9 - Prob. 46QCh. 9 - Prob. 47QCh. 9 - Prob. 48QCh. 9 - Prob. 49QCh. 9 - Prob. 50QCh. 9 - Prob. 51QCh. 9 - Prob. 52QCh. 9 - Prob. 53QCh. 9 - Prob. 54QCh. 9 - Prob. 55QCh. 9 - Prob. 56QCh. 9 - Prob. 57QCh. 9 - Prob. 58QCh. 9 - Prob. 59QCh. 9 - Prob. 60QCh. 9 - Suppose a beam of red light from an He-Ne laser...Ch. 9 - In a double-slit interference experiment, a...Ch. 9 - A light ray traveling in air strikes the surface...Ch. 9 - A ray of yellow light crosses the boundary between...Ch. 9 - Prob. 5PCh. 9 - A fish looks up toward the surface of a pond and...Ch. 9 - A camera is equipped with a lens with a focal...Ch. 9 - A 2.0-cm-tall object stands in front of a...Ch. 9 - When viewed through a magnifying glass, a stamp...Ch. 9 - . A person looks at a statue that is 2 m tall. The...Ch. 9 - Prob. 11PCh. 9 - . A small object is placed to the left of a convex...Ch. 9 - . If the object in Problem 12 is moved toward the...Ch. 9 - . (a) In a camera equipped with a 50-mm...Ch. 9 - . The focal length of a diverging lens is...Ch. 9 - . The equation connecting s, p, and f for a simple...Ch. 9 - . If the mirror described in the previous problem...Ch. 9 - Prob. 18PCh. 9 - Prob. 19PCh. 9 - Prob. 1CCh. 9 - In Section 9.6, we described how the speed of...Ch. 9 - Would the critical angle for a glass—water...Ch. 9 - Prob. 4CCh. 9 - Prob. 5CCh. 9 - Prob. 6CCh. 9 - Prob. 7CCh. 9 - Prob. 8CCh. 9 - Prob. 9CCh. 9 - Prob. 10C
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- To determine the refractvie index of a glass slab, an experiment was done. when the result is graphed, the slope is the refractive index of the medium. This soultion was given to me (2nd pic) as an explanation. however, i do not understand why sin theta 1/ sin theta 2 coresponds to the rise over run. would u explain it? thanksarrow_forwardI want to solve all branchesarrow_forwardThe Rayleigh criterion provides a convenient way to describe the theoretical resolution (e.g. an ability to distinguish objects ) of an optical system. The criterion states that two small bright sources of light can be resolved if the first d mìnimum of the image of one source point just coincides with of further apart then the first maximum of another (s Ho Your c below). A converging lens, 28.7 mm in diameter, is used to form images of distant objects. Considering the diffractio lens, what angular separation must two distant point objects have in order to satisfy Rayleigh's criterion? Assume t Here wavelength of the light from the distant objects is 469 nm. Provide your answer in millidegrees (mdeg). STE Exp complexity subscibers Answer: Choose... + Check Finishin Check carrow_forward
- Fig. 1 shows a laser beam incident on a piece of wet filter paper placed on a glass plate whose 'refractive indexglass plate whose refractive index is to be measured (the rays are represented in the figure). Explain what happens anddeduce an expression for ni in terms of R and d. Consider the refractive index of air to be 1.Note: Remember that all light that falls on a reflecting surface always has part of the light reflected, being refracted or not.refracted or not. Moreover, θc in the figure represents the critical angle at which we have the condition of total internal reflectionarrow_forwardCrystal lattices can be examined with X-rays but not UV. Why?arrow_forwardThe two prisms shown in Fig. 7.3 are made of glass.A ray of red light enters each prism from the air, as shown.The critical angle for red light at the glass-air boundary is 42 degrees.On Fig. 7.3, complete the paths of the rays through the prisms and out into the air again.arrow_forward
- Look at the central transparent area of someone’s eye, the pupil, in normal room light. Estimate the diameter of the pupil. Now turn off the lights and darken the room. After a few minutes turn on the lights and promptly estimate the diameter of the pupil. What happens to the pupil as the eye adjusts to the room light? Explain your observations.arrow_forwardA small drop of water that is free to fall in air will contract into a spherical ball. Suppose that sunlight (this will be as if from infinity) passes into the drop. Approximately where will an image of the Sun form? Water has an index of refraction of about 1.33 for visible light, and to answer this question consider what happens when light passes through the first surface from air into the water. Where does it go? Hint: If in doubt about your math, try an experiment at home. You can use sunlight or a distant flashlight to illuminate a suspended water drop. At the back surface of the drop. Spherical drops cannot form an image. Close to the back far side of the drop, on the outside. Close to the back side of the drop, on the insidearrow_forwardthe air? Problems 1.3 Show that the two rays that enter the system in Fig. P.4.39 parallel to each other emerge from it being parallel. (start from Eq.1.31) Figure P.4.39arrow_forward
- Light is incident on a plane mirror at an angle of 22 degrees relative to its surface.(a) What is the angle of reflection?arrow_forwardAn area with two identical lamps located above the clouds at a height of 30 ft and at a distance of 40 ft from each other is lit at night. Assuming that the lamps radiate uniformly in all directions, set the brightness on the ground for a point just below one of the lamps and a point in the middle of them.arrow_forwardExercise 56: An incident ray hits a face of an equilateral prism perpendicularly (figure 4.86). What is the minimum value of the refractive index of the prism if there is total internal reflection on the second face? Answer: 1.15 m *Please show steps and explanation for my understanding. Thank youarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY